Catégories
Photos du Québec

Kayak de mer à l’île d’Orléans

Kayaks de mer à Saint-Laurent-de-l'Île d'Orléans 2023
Kayaks de mer à Saint-Laurent-de-l’Île d’Orléans 2023

Dimanche 24 septembre 2023, la compagnie Quatre Natures   organisait un cours certifié de kayak de mer niveau 1 sur le fleuve Saint-Laurent, à partir de l’île d’Orléans. L’inscription se faisant longtemps d’avance, on devait avoir un peu de chance lors de l’activité, car elle aurait lieu autant par beau temps que par météo pourrie.

Je tente donc ma chance. Heureusement, une journée incroyable attend les six étudiants en cette fin de septembre : plein soleil et une vingtaine de degrés Celsius. Comment doit-on se vêtir pour les circonstances ? On sait que la température du corps humain est de 37 degrés Celsius. Le kayakiste additionne la température de l’eau et celle de l’air et compare le total à la température du corps humain. Le fleuve étant cette journée-là à 18 degrés et l’air autour de 20 degrés, cela donne un total de 38. Ce chiffre étant légèrement supérieur à la température normale du corps, on peut porter des vêtements usuels pour les activités dans l’eau, et non pas une combinaison isothermique

L’avant-midi sert à couvrir la théorie. Personne ne met un pied dans l’eau. L’instructeur discute de ce que le kayakiste doit obligatoirement avoir à bord, de la qualité relative des différents équipements, de la préparation, des communications et fréquences radio, de la sécurité et de la prévention de l’hypothermie, etc.

Activité de kayak de mer à l'île d'Orléans (crédit photo Vadym Kravchenko)
Activité de kayak de mer à l’île d’Orléans (crédit photo Vadym Kravchenko)

Après le dîner, on place d’abord les kayaks sur le gazon puis on apprend le vocabulaire relié à chaque partie du kayak. Par la suite, l’étudiant s’installe dans l’embarcation et se familiarise avec les ajustements des cale-pieds du kayak, la façon de tenir la pagaie, l’installation de la jupette, etc. On apporte ensuite les embarcations sur la rive et la pratique du kayaking débute.

Tout d’abord, on apprend les manœuvres de base. Comment embarquer et débarquer, la trajectoire que la pagaie doit suivre dans l’eau selon que l’on veut avancer, reculer, tourner. On discute de la position correcte du corps, des bras et des poignets sur la pagaie et de l’importance de la rotation du bassin pour forcer adéquatement. On réalise rapidement l’influence des vents de côté sur le kayak, spécialement lorsqu’il n’a pas de dérive ou de gouvernail.

On considère le fleuve comme étant de niveau 2 pour la pratique du kayak. Le courant est important et on compose avec des marées de trois mètres. Le vent autour de l’île est également plus fort qu’à Québec. Le pratiquant de niveau 1 est invité à se trouver des endroits de niveau 1 pour prendre de l’expérience et de ne jamais partir seul à cette étape de son apprentissage.

Pendant les exercices, on aperçoit au large les navires porte-conteneurs et les différents bateaux de plaisance. Les plus gros bâtiments génèrent des vagues qui prennent entre cinq et dix minutes avant d’atteindre la rive. Lorsque celles-ci approchent, l’instructeur avertit les kayakistes novices de se tourner face à l’onde, de façon à limiter les effets sur l’embarcation.

Le porte-conteneurs Hapag_Lloyd Quebec Express et le porte-Conteneurs MSC Paola s'apprêtent à contourner l'Île d'Orléans.
Le porte-conteneurs Hapag_Lloyd Quebec Express et le porte-Conteneurs MSC Paola s’apprêtent à contourner l’Île d’Orléans.
Le navire BBC Manila transporte des pales d'éoliennes sur le fleuve St-Laurent près de Québec
Le navire BBC Manila transporte des pales d’éoliennes sur le fleuve St-Laurent près de Québec

Puis viennent les manœuvres d’urgence : quelle est la procédure pour sortir d’un kayak qui vient de chavirer ? Comment aider quelqu’un qui a chaviré ?

Je n’ai pas eu le temps de me rendre à cette étape du cours. J’ai chaviré avant. Je ne me rappelle pas comment j’ai fait pour m’extirper du kayak et revenir à la surface, mais on ne parle pas ici d’une méthode approuvée. Le cerveau détecte immédiatement le danger et s’organise pour que le corps sorte du kayak et que la tête ne reste pas trop longtemps sous l’eau.

Dans les minutes qui suivent, l’instructeur nous enseigne comment s’effectue la sortie classique d’un kayak chaviré. Nous travaillons par groupes de deux. Au niveau 1, il n’est pas encore question d’utiliser la pagaie pour forcer la rotation du kayak.

Pour obtenir la certification KDM 1, tous doivent se pencher de côté pour que le kayak se renverse. Une fois submergé, l’étudiant se penche vers l’avant, décroche la jupette attachée au kayak, tape lentement trois fois sur la coque du kayak pour signaler qu’il est en contrôle de ce qu’il fait. On veut éviter les réactions imprévisibles. Il se pousse ensuite hors du kayak en plaçant ses mains à la hauteur des hanches sur la hiloire. Dès sa sortie de l’eau, il doit absolument se tenir le long de son kayak, grâce à la ligne de vie. Le tout ne prend que quelques secondes. Ici et là, on entend un peu tousser à la sortie de l’eau, mais sans plus. Une bonne gorgée de fleuve Saint-Laurent renforce le système immunitaire.

Vient ensuite la récupération de la personne dans l’eau. Comme nous travaillons en équipe, le ou la kayakiste en difficulté s’accroche au-devant de notre kayak et demeure là, le temps que l’on rattrape son kayak, le monte sur notre embarcation, le vide de son eau, le retourne et le positionne correctement.

Kayak de mer de niveau 1 avec Quatre Natures (crédit photo Quatre Natures)
Kayak de mer de niveau 1 avec Quatre Natures (crédit photo Quatre Natures)

La personne accrochée au kayak lâche ensuite sa prise, et selon la méthode enseignée, grimpe à nouveau dans son embarcation pendant qu’on la tient solidement. L’important ici est de conserver son centre de gravité le plus bas possible. Si la personne ne se presse pas et procède par étapes, l’opération est un succès à tous les coups. 

Quelques autres exercices suivent et le retour s’effectue vers la plage de l’île d’Orléans quelques heures plus tard. Une fois tous les participants séchés et rhabillés chaudement, le cours se termine par quelques notions de météo, dont la nécessité de consulter les prévisions et les radars météorologiques ainsi que de revenir rapidement au bord lorsqu’il y a présence de cellules orageuses.

On survole également le calcul de la marée (règle des 12) et la façon d’attacher un kayak sur un toit d’auto. Combien de points de fixations ? Quels sont les équipements disponibles pour faciliter la tâche ? Où doit-on passer les harnais pour éviter de briser le kayak ? Etc.

La remise du certificat KDM 1 se fait environ huit à neuf heures après le début du cours, selon l’évaluation de l’instructeur. J’ai noté que lors du retour à la maison, dans la chaleur de la voiture, je n’avais vraiment pas envie de me presser sur la route. Mais on revient vite à la réalité quand on voit la vitesse à laquelle les autos arrivent derrière soi.

Activité de kayak de mer sur le St-Laurent près de Rivière-du-Loup.
Activité de kayak de mer sur le St-Laurent près de Rivière-du-Loup.

Bref, une journée bien remplie dont on se souvient!

Cliquez sur le lien pour des photos de Québec et de l’île d’Orléans en automne sur mon blogue.

Catégories
Pionniers de l'aviation

Livres : Our Transatlantic Flight.

Notre vol transatlantique, par Sir John Alcock et Sir Arthur Whitten Brown
Notre vol transatlantique, par Sir John Alcock et Sir Arthur Whitten Brown

Je prends la liberté de traduire la version anglaise du texte publié sur mon site web.

Avant 1949, Terre-Neuve s’appelait Dominion of Newfoundland et faisait partie du British Commonwealth. En 1949, Terre-Neuve et Labrador est devenue une province du Canada.

Le premier vol direct sans escale en direction est à traverser l’Atlantique.

Le livre « Our transatlantic flight » raconte le vol historique qui a été accompli en 1919, juste après la Première Guerre mondiale, de Terre-Neuve vers l’Irlande. Il y avait un prix de 10,000 £ offert par Lord Northcliffe  en Grande-Bretagne pour quiconque réussirait le premier vol sans escale en direction est à travers l’Atlantique.

Un triomphe pour l’aviation britannique

Sir John Alcock et Sir Arthur Whitten Brown  , respectivement pilote et navigateur, ont écrit l’histoire de leur vol historique dans ce livre publié en 1969. Les citations suivantes proviennent des pilotes eux-mêmes : «  Pour la première fois dans l’histoire de l’aviation, l’Atlantique a été traversé en ligne directe, lors d’un vol sans escale qui a duré 15 heures 57 minutes. » (p.13) « Le vol fut un triomphe pour l’aviation britannique; le pilote et le navigateur étaient tous les deux Britanniques, l’avion était un Vickers-Vimy et les deux moteurs étaient fabriqués par Rolls-Royce. » (p.13)

Sir John Alcock et Sir Arthur Whitten Brown
Sir John Alcock et Sir Arthur Whitten Brown

Comme pour toutes les grandes réalisations humaines, une très bonne planification de vol et un peu de chance ont été nécessaires pour faire de ce vol un succès. S’il y avait une panne moteur pendant le vol, même si la planification était excellente, il n’y aurait qu’un seul résultat: la descente vers la mer.

Pour se rendre à Terre-Neuve en préparation pour le vol historique, Alcock et Brown montèrent à bord d’un navire en Angleterre, initialement à destination d’Halifax. Ils se dirigèrent ensuite vers Port aux Basques et arrivèrent finalement à St.John’s. Là, ils rejoignent un petit groupe d’aviateurs britanniques arrivés quelques jours auparavant et qui se préparaient également pour la compétition. « Les soirées se déroulèrent principalement à jouer aux cartes avec les autres concurrents à l’hôtel Cochrane, ou à visiter les cinémas voisins. St.John’s elle-même nous accueillit très bien. »(P.60)

Le transport maritime fût utilisé pour transporter le biplan Vickers-Vimy à Terre-Neuve le 4 mai. Il fût ensuite assemblé. « Les journalistes représentant le Daily Mail, le New York Times et le New York World nous apportèrent souvent leur aide lorsque des effectifs supplémentaires étaient nécessaires. »(P.61).

Pendant la construction de l’avion, de plus en plus de visiteurs venaient sur le site. Brown écrit: « Bien que nous n’éprouvions aucun souci tant que la foule se contentait de regarder, nous devions surveiller pour éviter les petits dommages. Tester la fermeté du tissu avec la pointe d’un parapluie était un passe-temps favori des spectateurs […]. »(P.61)

Le Vickers-Vimy est réassemblé à Quidi Vidi, à Terre-Neuve.
Le Vickers-Vimy est réassemblé à Quidi Vidi, à Terre-Neuve.

Il fut difficile de trouver un terrain qui pourrait être improvisé en aérodrome: « Terre-Neuve est un endroit hospitalier, mais ses meilleurs amis ne peuvent pas prétendre qu’il est idéal pour l’aviation. L’ensemble de l’île n’a aucun terrain qui pourrait être transformé en un aérodrome de première classe. Le quartier autour de St.John’s est particulièrement difficile. Une partie du pays est boisée, mais pour l’ensemble, il présente une surface onduleuse et sinueuse sur laquelle les avions ne peuvent pas rouler avec un quelconque degré de douceur. Le sol est mou et parsemé de rochers, car seule une couche mince de terre recouvre la couche rocheuse. Un autre handicap est la prévalence de brouillards épais qui avancent vers l’ouest depuis la mer. »(P.59)

Ils ont testé l’avion en vol le 9 juin à Quidi Vidi. Pendant le court vol, l’équipage a pu apercevoir des icebergs près de la côte. Ils ont fait un deuxième essai le 12 juin et ont constaté que l’émetteur causait constamment des problèmes. Mais, au moins, les moteurs semblaient fiables …

Le départ

Les deux hommes quittèrent Terre-Neuve le 14 juin 1919. Afin de combattre l’air froid en vol, ils portaient des vêtements chauffés électriquement. Une batterie située entre deux sièges fournissait l’énergie nécessaire.

Le Vickers-Vimy décolle de Terre-Neuve en 1919.
Le Vickers-Vimy décolle de Terre-Neuve en 1919.

Le décollage court fut très difficile en raison du vent et de la surface accidentée de l’aérodrome. Brown écrit : « Plusieurs fois, j’ai retenu mon souffle, de peur que le dessous de l’avion ne heurte un toit ou une cime d’arbre. Je suis convaincu que seul le pilotage intelligent d’Alcock nous a sauvés d’une catastrophe si tôt dans le voyage. »(P. 73)

Il leur a fallu 8 minutes pour atteindre 1000 pieds. À peine une heure après le départ et une fois au-dessus de l’océan, le générateur est tombé en panne et l’équipage a été coupé de tout moyen de communication.

Au fur et à mesure que l’avion consommait de l’essence, le centre de gravité changeait et comme il n’y avait pas de compensation automatique sur la machine, le pilote devait exercer une pression permanente vers l’arrière sur la commande de contrôle.

Voler dans les nuages, le brouillard et la turbulence.

Pendant ce vol dans les nuages ​​et le brouillard, Brown, n’ayant quasiment pas de moyens pour faciliter la navigation, a eu de réels problèmes pour estimer la position de l’avion et limiter les erreurs de vol. Il a dû attendre une altitude plus élevée et que la nuit vienne pour améliorer ses calculs : « J’attendais impatiemment la première vue de la lune, de l’étoile Polaire et d’autres vieux amis de chaque navigateur. »(P.84). Le brouillard et les nuages ​​étaient si épais qu’ils « coupaient parfois de la vue des parties du Vickers-Vimy. »(P.95)

Sans instruments appropriés pour voler dans les nuages, ils comptaient sur un « compte-tours » pour établir la vitesse de montée ou de descente. C’est assez éprouvant. « Une augmentation soudaine des révolutions indiquait que l’avion plongeait; une perte soudaine de régime montrait qu’il grimpait dangereusement. »(P.176)

Mais cela ne suffit pas. Ils durent également faire face à des turbulences qui secouaient l’avion alors qu’ils ne pouvaient rien voir à l’extérieur. Ils devinrent désorientés : « L’indicateur de vitesse fonctionnait mal et de fortes secousses m’empêchaient de tenir notre cap. La machine tanguait d’un côté à l’autre et il était difficile de savoir dans quelle position nous étions vraiment. Une vrille fut le résultat inévitable. D’une altitude de 4 000 pieds, nous avons rapidement tournoyé vers le bas. […]. Mis à part les changements de niveaux indiqués par l’anéroïde, seul le fait que nos corps étaient fermement pressés contre les sièges indiquait que nous tombions. Comment et à quel angle nous tombions, nous ne le savions pas. Alcock essaya de ramener l’avion en vol rectiligne, mais échoua parce que nous avions perdu tout sens de ce qui était horizontal. J’ai cherché dans tous les sens un signe extérieur, et je n’ai vu qu’une nébulosité opaque. »(P.88)

« Ce fut un moment de tension pour nous, et quand enfin nous sommes sortis du brouillard, nous nous sommes retrouvés au-dessus de l’eau à un angle extrêmement dangereux. La huppe blanche des vagues était trop près pour être à l’aise, mais un rapide aperçu de l’horizon m’a permis de reprendre le contrôle de l’engin. »(P.40).

Le dégivrage d’une jauge installée à l’extérieur du cockpit.

La neige et le grésil  continuaient de tomber. Ils ne réalisèrent pas à quel point ils avaient eu de la chance de continuer à voler dans un tel temps. De nos jours, il existe de nombreuses façons de déloger la glace d’une aile pendant que l’avion est en vol. Voici ce que Brown dit de leur situation : « […] Les côtés supérieurs de l’avion étaient entièrement recouverts d’une croûte de grésil. La neige fondue s’enfonça dans les charnières des ailerons et les bloqua, de sorte que pendant environ une heure la machine eut à peine un contrôle latéral. Heureusement, le Vickers-Vimy possède une grande stabilité latérale inhérente; et, comme les commandes de gouvernail de direction n’ont jamais été obstruées par le grésil, nous avons été capables de maintenir la bonne direction. »(P.95)

Après douze heures de vol, la vitre d’une jauge située à l’extérieur du cockpit est devenue obscurcie par l’accumulation de neige collante. Brown dû s’en occuper pendant qu’Alcock volait. « La seule façon d’atteindre la jauge était de sortir du cockpit et de m’agenouiller sur le dessus du fuselage, tout en agrippant une traverse pour maintenir mon équilibre. […] Le violent afflux d’air, qui avait tendance à me pousser en arrière, était un autre inconfort. […] Jusqu’à la fin de la tempête, une répétition de cette performance, à des intervalles assez fréquents, a continué d’être nécessaire. »(P.94)

Afin de sauver leur peau, ils ont éventuellement exécuté une descente de 11 000 à 1 000 pieds et dans l’air plus chaud les ailerons ont recommencé à fonctionner. Alors qu’ils continuaient leur descente en dessous de 1000 pieds au-dessus de l’océan, ils étaient toujours entourés de brouillard. Ils ont dû faire du vol à basse altitude extrême : « Alcock laissait l’avion descendre très graduellement, ne sachant pas si le nuage s’étendait jusqu’à la surface de l’océan ni à quel moment le train d’atterrissage de l’engin pourrait soudainement toucher les vagues. Il avait desserré sa ceinture de sécurité et était prêt à abandonner le navire si nous heurtions l’eau […]. »(P.96)

L’arrivée

Le vol transatlantique se termine en Irlande dans un marais.
Le vol transatlantique se termine en Irlande dans un marais.

Au départ, personne en Irlande ne pensait que l’avion était arrivé d’Amérique du Nord. Mais quand ils ont vu des sacs postaux de Terre-Neuve, il y a eu « des acclamations et des poignées de main douloureuses » (p.102)

Manchette principale du Sunday Evening Telegraph en 1919.
Manchette principale du Sunday Evening Telegraph en 1919.

Ils furent acclamés par la foule en Irlande et en Angleterre et reçurent leur prix de Winston Churchill.

John Alcock célébré par la foule
John Alcock célébré par la foule
Winston Churchill présente le chèque du Daily Mail aux deux pilotes.
Winston Churchill présente le chèque du Daily Mail aux deux pilotes.

Leur record resta incontesté pendant huit ans jusqu’au vol de Lindbergh en 1927.

Le futur des vols transatlantiques.

Vers la fin du livre, les auteurs risquent une prédiction sur l’avenir du vol transatlantique. Mais l’aviation a fait un tel progrès en très peu de temps que, inévitablement, leurs réflexions sur le sujet sont devenues obsolètes en quelques années. Voici quelques exemples :

« Malgré le fait que les deux premiers vols outre-Atlantique ont été effectués respectivement par un hydravion et un avion, il est évident que l’avenir du vol transatlantique appartient au dirigeable. »(P.121)

« […] Le type d’avion lourd nécessaire pour transporter une charge économique sur de longues distances ne serait pas capable de faire beaucoup plus que 85 à 90 milles à l’heure. La différence entre cette vitesse et la vitesse actuelle du dirigeable de 60 milles à l’heure serait réduite par le fait qu’un avion doit atterrir à des stations intermédiaires pour le ravitaillement en carburant. »(P.123)

« Il n’est pas souhaitable de voler à de grandes hauteurs en raison de la basse température; mais avec des dispositions appropriées pour le chauffage, il n’y a aucune raison pour qu’un vol à 10,000 pieds ne devienne pas commun. »(P.136)

L’ère de l’aviation.

Il y a une courte section dans le livre sur « l’ère de l’aviation ». J’ai choisi deux petits extraits concernant l’Allemagne et le Canada :

À propos des excellents Zeppelins allemands : « Le nouveau type de Zeppelin — le Bodensee — est si efficace qu’aucune condition météorologique, à l’exception d’un fort vent de travers par rapport au hangar, ne l’empêche d’effectuer son vol quotidien de 390 miles entre Friedrichshafen et Staalsen, à treize miles de Berlin. »(P.140)

Sur l’utilisation des avions par le Canada : « Le Canada a trouvé une utilisation très réussie des avions dans la prospection du bois du Labrador. Plusieurs avions sont revenus d’une exploration avec de précieuses photographies et des cartes représentant des centaines de milliers de livres [£] de terres forestières. Des patrouilles aériennes de lutte contre les incendies sont également envoyées au-dessus des forêts. » (p.142) et « Déjà, la Gendarmerie à cheval du nord-ouest du Canada [aujourd’hui la GRC] a capturé des criminels au moyen de patrouilles aériennes. »(P.146)

Conclusion

Le Manchester Guardian déclarait, le 16 juin 1919 : « […] Pour autant qu’on puisse le prévoir, l’avenir du transport aérien au-dessus de l’Atlantique n’est pas pour l’avion. Ce dernier peut être utilisé à de nombreuses reprises pour des exploits personnels. Mais de façon à rendre l’avion suffisamment sûr pour un usage professionnel sur de telles routes maritimes, nous devrions avoir tous les cyclones de l’Atlantique marqués sur la carte et leur progression indiquée d’heure en heure. »(P.169)

Titre : Our transatlantic flight

Auteurs : Sir John Alcock et Sir Arthur Whitten Brown

Éditions : William Kimber

© 1969

SBN : 7183-0221-4

Pour d’autres articles de ce genre sur mon site web: les pionniers de l’aviation

Catégories
Simulation de vol

Solution radicale aux vents de travers dans la simulation de vol

Il n’y a pas d’aéronefs dans le ciel aux environs de l’aéroport virtuel de Port Moresby Jacksons (AYPY) aujourd’hui. Aucun aéronef sauf un, chargé d’une évacuation médicale.

Arrivée du Medevac vers l'aéroport de Port Moresby Jacksons (AYPY). Les vents empêchent un atterrissage normal.
Arrivée du Medevac vers l’aéroport de Port Moresby Jacksons (AYPY). Les vents empêchent un atterrissage normal.

Les vents soufflent du 240 degrés à 50G60 nœuds et les pistes sont orientées 14/32. Cela dépasse largement les vents de travers autorisés pour les aéronefs.

Mais l’équipage du Rockwell Shrike Commander 500S ne peut attendre que le vent se calme. Il doit atterrir dans les prochaines minutes pour espérer sauver la vie du patient.

L'aéroport de Port Moresby Jacksons (AYPY) est en vue en haut au centre de la photo.
L’aéroport de Port Moresby Jacksons (AYPY) est en vue en haut au centre de la photo.

Étant donné qu’il n’y a aucun trafic aérien autour de l’aéroport, le commandant de bord a signifié aux contrôleurs aériens son intention d’effectuer une approche sécuritaire mais qui sort de la norme établie.

L'avion est placé graduellement pour arriver en ligne droite vers le hangar de AYPY.
L’avion est placé graduellement pour arriver en ligne droite vers le hangar de AYPY.

L'avion s'aligne face au vent pour l'approche à travers les pistes.
L’avion s’aligne face au vent pour l’approche à travers les pistes.

Arrivant directement à travers les pistes, face au vent, l’équipage a l’intention de faire atterrir l’avion à quelques pieds d’un hangar. Le capitaine demande que quelqu’un ouvre la porte du hangar immédiatement. L’approche se terminera devant les portes du hangar, protégée du vent.

Trajet du Shrike Commander 500S vers le hangar de l'aéroport de Port Moresby Jacksons. La porte est ouverte pour l'arrivée.
Trajet du Shrike Commander 500S vers le hangar de l’aéroport de Port Moresby Jacksons. La porte est ouverte pour l’arrivée.

Il est plus sécuritaire d’arriver directement face au vent et d’entrer immédiatement dans le hangar. Il faut éviter de circuler avec des vents de 60 nœuds de travers.

Inutile de dire que le contrôleur aérien a refusé la demande. Le capitaine d’un avion est cependant le seul qui décide de la meilleure surface pour l’atterrissage, autant pour la sécurité des passagers que pour lui-même. Il procède avec son approche, après avoir clairement indiqué quelle trajectoire sera suivie.

Le Shrike Commander 500S au-dessus des habitations près de Port Moresby Jacksons.
Le Shrike Commander 500S au-dessus des habitations près de Port Moresby Jacksons.

Le problème principal pour l’approche est la turbulence mécanique de bas niveau causée par les vents en rafales de 60 nœuds.

Si l’ATC veut faire une plainte, le moment est arrivé : il est possible de prendre une photo de l’avion de même que de son immatriculation.

Vol par le travers de la tour de contrôle de AYPY.
Vol par le travers de la tour de contrôle de AYPY.

La vitesse-sol de l’avion se situe autour de 20 nœuds.

Le Shrike Commander 500S en approche à travers les pistes de l'aéroport de Port Moresby Jacksons. Les vents soufflent du 240 degrés à 50G60.
Le Shrike Commander 500S en approche à travers les pistes de l’aéroport de Port Moresby Jacksons. Les vents soufflent du 240 degrés à 50G60.

La vitesse stable des vents est actuellement plus sécuritaire que si les vents étaient du 240 à 35G60.

Vitesse-sol de 20 noeuds pour le Shrike Commander 500S en finale pour le hangar de Port Moresby Jacksons (AYPY).
Vitesse-sol de 20 noeuds pour le Shrike Commander 500S en finale pour le hangar de Port Moresby Jacksons (AYPY).

Toujours légèrement au-dessus de la piste et à une vitesse-sol entre 10 et 20 nœuds. L’anémomètre indique la vitesse du vent lui-même additionnée à celle de la vitesse-sol.

Vitesse indiquée 70 noeuds.
Vitesse indiquée 70 noeuds.

Vue frontale du Shrike Commander 500S pendant l'arrondi devant le hangar de AYPY.
Vue frontale du Shrike Commander 500S pendant l’arrondi devant le hangar de AYPY.

L’avion flotte comme une montgolfière ou presque!

Vue latérale du Shrike Commander 500S en finale pour le hangar à Port Moresby Jacksons.
Vue latérale du Shrike Commander 500S en finale pour le hangar à Port Moresby Jacksons.

Le Shrike Commander atterrira sous peu à Port Moresby Jacksons.
Le Shrike Commander atterrira sous peu à Port Moresby Jacksons.

Au moment où l’avion touche le sol, il arrête presqu’immédiatement. Il est même nécessaire de mettre les gaz pour atteindre le hangar, comme en témoigne les traînées blanches derrière l’appareil.

Dans la vraie vie, le touché des roues se serait fait dès que débute l’asphalte étant donné que la présence du hangar réduit un peu la vitesse du vent.

Atterrissage du Shrike Commander quelques pieds avant le hangar. Du pouvoir supplémentaire est nécessaire pour atteindre le hangar.
Atterrissage du Shrike Commander quelques pieds avant le hangar. Du pouvoir supplémentaire est nécessaire pour atteindre le hangar.

Quelques secondes après s’être posé, l’avion est dans le hangar, protégé du vent, et autant le médecin que le patient peuvent rapidement être conduits à l’hôpital.

Le Shrike Commander 500S dans le hangar à Port Moresby (AYPY).
Le Shrike Commander 500S dans le hangar à Port Moresby (AYPY).

Une fois dans le hangar, les vents virtuels sont ajustés à zéro, ce qui est logique, à moins que le mur opposé du hangar soit absent!

Vue verticale de l'aéroport de Port Moresby Jacksons (AYPY)
Vue verticale de l’aéroport de Port Moresby Jacksons (AYPY)

Il est maintenant temps de se préparer à affronter une autre tempête, celle de l’enquête qui suivra possiblement l’atterrissage!

(P.S. : Tim Harris et Ken Hall ont été les créateurs de cet aéroport virtuel de Port Moresby Jacksons. Ce dernier est vendu par Orbx et l’avion virtuel est venu par Carenado).

Catégories
Simulation de vol

Simulation de vol (FSX): un C-17A à l’aéroport de Block Island (KBID) aux États-Unis

Alex Geoff, le concepteur de l’aéroport virtuel de Block Island (KBID) de ORBX a demandé aux enthousiastes de simulation de vol de tenter d’utiliser le plus gros appareil possible sur cet aéroport dont la piste ne fait que 2502 pieds.

Avion militaire canadien C17-A prêt pour le décollage piste 10 à l'aéroport virtuel de Block Island (KBID) aux États-Unis (FSX)
Avion militaire canadien C17-A prêt pour le décollage piste 10 à l’aéroport virtuel de Block Island (KBID) aux États-Unis (FSX)

Naturellement, il est ici question de vol virtuel. Il faut donc pardonner l’atterrissage d’un appareil qui, dans la vraie vie, détruirait la piste sans compter les nombreux arbres qu’il faudrait tailler si l’avion utilisait la voie de circulation après l’atterrissage. Et j’oubliais également les pilotes et le gérant d’aéroport qu’il faudrait renvoyer suite à l’autorisation de la manœuvre.

Le contexte du vol étant donc présenté, voici les données qui permettront aux amateurs de vol virtuel de retenter le circuit à l’aéroport de Block Island avec un C-17A de Virtavia.

Contrairement aux appareils de type Cessna qui utilisent généralement l’aéroport, la masse de mon C-17A militaire canadien était de 405,000 livres. Le carburant a été ajusté à 50% dans les réservoirs extérieurs et intérieurs. Les deux pilotes ont accepté de sauter le dîner, de façon à ne pas ajouter de poids supplémentaire à l’appareil…

Les volets étaient ajustés à 2/3. J’ai reculé l’avion jusqu’en tout début de piste, appliqué les freins, pousser la manette des gaz à fond, attendu la montée du régime maximal, relâché les freins et profité de l’effet de sol pour arracher l’appareil du sol au tout dernier moment. Le décollage s’est fait sur la piste 10 par vent de travers de 12 nœuds et avec un angle de 70 degrés par rapport à la piste.

Avion militaire canadien C17-A décolle piste 10 à l'aéroport virtuel de Block Island (KBID) aux États-Unis (FSX)
Avion militaire canadien C17-A décolle piste 10 à l’aéroport virtuel de Block Island (KBID) aux États-Unis (FSX)

Par la suite, quatre virages à droite successifs ont été effectués : 190°, 280°, 010° et 100°. Lors du vol, l’altitude de l’appareil n’a pas dépassé 2000 pieds.

Avion militaire canadien C17-A vire vent arrière piste 10 à l'aéroport virtuel de Block Island (KBID) aux États-Unis (FSX)
Avion militaire canadien C17-A vire vent arrière piste 10 à l’aéroport virtuel de Block Island (KBID) aux États-Unis (FSX)

Les roues et les pleins volets étaient sortis en base de façon à ne pas avoir à faire trop de réglages en finale.

Avion militaire canadien C17-A en base piste 10 à l'aéroport virtuel de Block Island (KBID) aux États-Unis (FSX)
Avion militaire canadien C17-A en base piste 10 à l’aéroport virtuel de Block Island (KBID) aux États-Unis (FSX)

Avion militaire canadien C17-A en longue finale piste 10 à l'aéroport virtuel de Block Island (KBID) aux États-Unis (FSX)
Avion militaire canadien C17-A en longue finale piste 10 à l’aéroport virtuel de Block Island (KBID) aux États-Unis (FSX)

Avion militaire canadien C17-A en finale piste 10 à l'aéroport virtuel de Block Island (KBID) aux États-Unis (FSX)
Avion militaire canadien C17-A en finale piste 10 à l’aéroport virtuel de Block Island (KBID) aux États-Unis (FSX)

La vitesse est éventuellement descendue à 128 nœuds et, alors que l’appareil était encore à deux pieds dans les airs, les aérofreins ont été sortis. Les inverseurs de poussée ont été activés au maximum (pression continue sur F2) juste avant de toucher le sol puisqu’ils prennent du temps à faire effet. Normalement ça ne se fait pas et vous pouvez donc activer les inverseurs directement lors du toucher au sol, vous ne perdrez qu’une seconde. Les roues du train principal ont touché le tout début de la piste et le freinage maximal a alors été engagé.

Avion militaire canadien C17-A atterri piste 10 à l'aéroport virtuel de Block Island (KBID) aux États-Unis (FSX)
Avion militaire canadien C17-A atterri piste 10 à l’aéroport virtuel de Block Island (KBID) aux États-Unis (FSX)

Il a été possible de sortir sur la voie de circulation sans avoir à remonter la piste. L’environnement passant encore en deuxième, quelques arbres avaient été taillés pour ne pas qu’il y ait contact avec les ailes de l’appareil.

Avion militaire canadien C17-A quitte la piste 10 à l'aéroport virtuel de Block Island (KBID) aux États-Unis (FSX)
Avion militaire canadien C17-A quitte la piste 10 à l’aéroport virtuel de Block Island (KBID) aux États-Unis (FSX)

Avion militaire canadien C17-A sur la voie de circulation à l'aéroport virtuel de Block Island (KBID) aux États-Unis (FSX)
Avion militaire canadien C17-A sur la voie de circulation à l’aéroport virtuel de Block Island (KBID) aux États-Unis (FSX)

Si vous tentez l’expérience, pensez à sauvegarder le vol lorsque vous êtes en finale, au cas où vous ne seriez pas satisfait de votre performance à l’atterrissage (avion endommagé, maisons et véhicules du voisinage détruits, incendie d’une partie de la forêt au bout de la piste 10, victimes collatérales, etc.).

Avion militaire canadien C17-A à l'aéroport virtuel de Block Island (KBID) aux États-Unis (FSX)
Avion militaire canadien C17-A à l’aéroport virtuel de Block Island (KBID) aux États-Unis (FSX)

Pour d’autres articles dans la catégorie “Simulation de vol”, cliquez sur le lien suivant : Simulation de vol

Bonne chance!

Catégories
Simulation de vol

Simulation de vol : un DC-3 sur skis sur la piste de glace de Homer (PAHO) en Alaska, sous FSX

DC-3 sur l'aéroport virtuel de Homer (PAHO) en Alaska (FSX)
DC-3 sur l’aéroport virtuel de Homer (PAHO) en Alaska (FSX)

Si vous désirez tenter l’expérience de faire un atterrissage virtuel sur une piste de glace, une opportunité vous est offerte par la compagnie ORBX à travers leur aéroport virtuel de Homer (PAHO) en Alaska. Pour le vol virtuel, j’ai utilisé la plateforme FSX mais P3D aurait également donné d’excellents résultats.

DC-3 sur skis au décollage de l'aéroport virtuel de Homer (PAHO) en Alaska (FSX)
DC-3 sur skis au décollage de l’aéroport virtuel de Homer (PAHO) en Alaska (FSX)

La piste de glace est juste à côté de la piste principale (et asphaltée) de Homer. J’ai cru que le DC-3 serait un excellent choix pour cette tentative étant donné sa vitesse d’approche très basse et le fait qu’il soit un des quelques modèles seulement d’aéronefs virtuels équipés de skis.

Un DC-3 sur skis tourne en finale pour la piste glacée de Homer en Alaska (FSX)
Un DC-3 sur skis tourne en finale pour la piste glacée de Homer en Alaska (FSX)

Si vous décidez de tenter ce vol, assurez-vous au préalable de configurer votre simulateur de vol pour que l’option de la piste de glace de Homer soit activée, sinon vous allez vous retrouver dans la flotte…

De façon à ajouter un peu de défi en même temps que de réalisme à la scène hivernale, ajoutez un peu de vents de travers et activez l’option « heavy snow » dans FSX. Le programme PrecipitFX aide beaucoup si vous recherchez une meilleure définition des précipitations, que ce soit pour la pluie ou la neige. Pour ce vol, le programme virtuel CumulusX était également activé.

Vue du cockpit d'un DC-3 virtuel en finale pour la piste de glace de Homer (PAHO) en Alaska (FSX)
Vue du cockpit d’un DC-3 virtuel en finale pour la piste de glace de Homer (PAHO) en Alaska (FSX)

DC-3 virtuel sur skis en courte finale pour la piste de glace de Homer (PAHO) en Alaska (FSX)
DC-3 virtuel sur skis en courte finale pour la piste de glace de Homer (PAHO) en Alaska (FSX)

DC-3 virtuel sur skis au point de toucher le seuil de la piste de glace de Homer en Alaska (FSX)
DC-3 virtuel sur skis au point de toucher le seuil de la piste de glace de Homer en Alaska (FSX)

Ce petit vol s’est avéré une expérience intéressante, étant donné que la piste était étroite et qu’il y avait un peu de vents de travers. Je croyais que ce serait très glissant à l’arrivée mais ce ne fut pas le cas. Peut-être qu’un jour les pros d’ORBX, en coopération avec ceux de FSX Steam (Dovetail Games), modifieront la plateforme de simulation de vol pour ajouter des possibilités de CRFI (JBI) de .40 ou moins de façon à accroître le niveau de difficulté de contrôle de l’aéronef virtuel une fois l’aéronef sur la glace?

Un DC-3 sur skis à quelques pieds au-dessus de la piste de glace de Homer (FSX), produit de la compagnie ORBX
Un DC-3 sur skis à quelques pieds au-dessus de la piste de glace de Homer (FSX), produit de la compagnie ORBX

Un DC-3 virtuel sur skis après un atterrissage sur la piste de glace de Homer (PAHO) en Alaska (FSX)
Un DC-3 virtuel sur skis après un atterrissage sur la piste de glace de Homer (PAHO) en Alaska (FSX)

Un DC-3 virtuel sur skis remontant la piste de glace de Homer (PAHO) en Alaska (plateforme FSX)
Un DC-3 virtuel sur skis remontant la piste de glace de Homer (PAHO) en Alaska (plateforme FSX)

Étant donné que ce vol n’est pas un exercice très difficile, je l’ai placé dans la section « simulation de vol » de mon site, sous « vols virtuels standards ». Pour d’autres vols virtuels de ce genre, cliquez sur le lien suivant : Autres vols virtuels standards

Amusez-vous à tenter ce vol! Bientôt, je présenterai une autre piste de glace située en Antarctique, dont la scène virtuelle a été conçue par Aerosoft. On peut même y faire atterrir un C-17 Globemaster III

Pour d’autres articles dans la catégorie “Simulation de vol”, cliquez sur le lien suivant : Simulation de vol