Archives de mot-clé : aéroport virtuel

Liste complète des aéroports virtuels Orbx gratuits et payants.


L’édition complète de la liste des aéroports virtuels Orbx gratuits et payants, en date du 9 juin 2019, se trouve dans le lien PDF téléchargeable ci-dessous (en vert). La liste des aéroports comprend également les détails pour les pistes et l’élévation de l’aéroport. La liste sera mise à jour régulièrement.

Les informations contenues dans les fichiers sont en couleur. Les aéroports en noir proviennent des Global Freeware Pack. Les aéroports en vert sont également gratuits, mais ne font pas partie des Global Freeware Pack. Les aéroports en bleu sont payants.

Quand une piste est de couleur orange, c’est qu’elle est de 2000 pieds ou moins et/ou que sa largeur est de 60 pieds ou moins. Les hydroaérodromes ont la mention “water” en bleu. À la fin de chaque description des pistes se trouve l’élévation de l’aéroport. Elle est en rouge.

Liste complète des aéroports payants et gratuits avec description des pistes.



Quatrième édition de la liste des aéroports virtuels gratuits et payants de Orbx.


La quatrième édition de la liste des aéroports virtuels Orbx gratuits et payants en date du 2 juin 2019 se trouve dans le lien PDF téléchargeable ci-dessous (en vert). La liste des aéroports est complète, mais je complète actuellement les détails reliés aux pistes de chaque aéroport.

Les informations contenues dans les fichiers sont en couleur. Les aéroports en noir proviennent des Global Freeware Pack. Les aéroports en vert sont également gratuits, mais ne font pas partie des Global Freeware Pack. Les aéroports en bleu sont payants.

Quand une piste est de couleur orange, c’est qu’elle est de 2000 pieds ou moins et/ou que sa largeur est de 60 pieds ou moins. Les hydroaérodromes ont la mention “water” en bleu. À la fin de chaque description des pistes se trouve l’élévation de l’aéroport. Elle est en rouge.

Quatrième édition de la liste des aéroports gratuits et payants de Orbx.



Troisième édition de la liste des aéroports virtuels gratuits et payants de orbx.


La troisième édition de la liste des aéroports Orbx gratuits et payants en date du 26 mai 2019 se trouve dans le lien PDF téléchargeable ci-dessous (en vert). La liste n’est pas encore complète, mais elle avance bien.

Les informations contenues dans les fichiers sont en couleur. Les aéroports en noir proviennent des Global Freeware Pack. Les aéroports en vert sont également gratuits, mais ne font pas partie des Global Freeware Pack. Les aéroports en bleu sont payants.

Quand une piste est de couleur orange, c’est qu’elle est de 2000 pieds ou moins et/ou que sa largeur est de 60 pieds ou moins. Les hydroaérodromes ont la mention “water” en bleu. À la fin de chaque description des pistes se trouve l’élévation de l’aéroport. Elle est en rouge.

Troisième édition de la liste des aéroports gratuits et payants de Orbx.



La courte piste en montagne de Launumu en Papouasie Nouvelle-Guinée

Un DHC-3 de la compagnie Air Saguenay a réussi  à faire le voyage entre le Québec et Kokoda en Papouasie Nouvelle-Guinée. Il travaillera dans le secteur, sur les différentes pistes en montagne, durant plusieurs mois.

Le Otter d'Air Saguenay circule pour la piste de Kokoda en direction de Launumu en Papouasie Nouvelle-Guinée.
Le Otter d’Air Saguenay circule pour la piste de Kokoda en direction de Launumu en Papouasie Nouvelle-Guinée.

Aujourd’hui, le Otter se dirige vers Launumu, une piste en montagne dont l’élévation est de 5082 pieds asl et qui a une longueur de 1200 pieds.

Le Otter d'Air Saguenay au départ de Kokoda.
Le Otter d’Air Saguenay au départ de Kokoda.

Il faut surveiller les oiseaux pour éviter les collisions en vol.

Avion Otter et oiseaux.
Avion Otter et oiseaux.

Une bonne façon d’atteindre Launumu est de suivre le sentier de Kokoda.

Le Otter dans les montagnes de la Nouvelle-Guinée, suivant la piste de Kokoda.
Le Otter dans les montagnes de la Nouvelle-Guinée, suivant la piste de Kokoda.

Si le mélange air/essence n’est pas bien ajusté, l’aéronef perdra de la puissance en tentant de franchir certaines montagnes dont le sommet culmine autour de 7500 pieds.

Tableau de bord du Otter avec le mélange air/essence ajusté.
Tableau de bord du Otter avec le mélange air/essence ajusté.

Tout pilote atterrissant ou quittant Launumu doit composer avec une haute altitude densité. Ce n’est pas seulement dû à l’élévation de la piste, mais aussi à la présence d’air chaud et humide dans la région. En conséquence, une vitesse un peu plus élevée sera nécessaire au moment de l’arrivée et du départ. La piste de Launumu est en vue.

La piste de Launumu est en vue.
La piste de Launumu est en vue.

Lorsqu’un pilote atterri en direction sud-ouest sur la piste de Launumu, en provenance de Kokoda, il doit plonger dans la vallée pour perdre de l’altitude. Cela aura pour conséquence d’accroître la vitesse de l’appareil.

Si la vitesse n’est pas promptement corrigée, l’approche pour la piste de Launumu se fera à une vitesse trop élevée. Toute vitesse en haut de 60 nœuds forcera le pilote à effectuer une approche manquée (à moins que vous soyez prêt à mourir virtuellement quelques fois en tentant de forcer l’approche).

Perte d'altitude en respectant la limite des volets.
Perte d’altitude en respectant la limite des volets.

Donc, une fois les plus hautes montagnes franchies, une bonne façon de perdre de l’altitude sans gagner de vitesse est d’utiliser les volets et de faire un virage serré de 360 degrés tout en descendant. De cette façon, le pilote terminera le virage en ligne avec la piste et à la vitesse désirée, qui se situe autour de 50 nœuds.

Virage en descente dans la vallée pour une approche vers Launumu.
Virage en descente dans la vallée pour une approche vers Launumu.

Le Otter plane longuement grâce à ses immenses ailes.

Le Otter d'Air Saguenay en approche pour la courte piste de Launumu en Papouasie Nouvelle-Guinée.
Le Otter d’Air Saguenay en approche pour la courte piste de Launumu en Papouasie Nouvelle-Guinée.

En finale pour la piste de Launumu, le pilote devra composer avec quelques arbustes en finale. Il n’est pas inhabituel pour un Otter ou un Beaver de compléter une approche difficile avec quelques plantes vertes enroulées autour du train d’atterrissage.

Le Otter d'Air Saguenay en finale pour la piste en montagne de Launumu.
Le Otter d’Air Saguenay en finale pour la piste en montagne de Launumu.

Arrivée d'un avion de type Otter sur la piste en altitude de Launumu.
Arrivée d’un avion de type Otter sur la piste en altitude de Launumu.

Launumu offre une surprise aux nouveaux arrivants. Si le pilote atterri en direction sud-ouest, comme cela est fait ici, et qu’il n’immobilise pas l’avion en-dedans d’approximativement 600 pieds, l’aéronef recommence à accélérer à cause de la pente prononcée dans la deuxième partie de la piste. Cette pente mène à une falaise. En cas d’approche manquée, le pilote peut utiliser la pente descendante pour plonger dans la vallée en fin de piste et ainsi accroître la vitesse de l’appareil et débuter une nouvelle approche.

Maintenant que le travail difficile est fait, il suffit d’attendre les passagers et la cargaison et de planifier le prochain vol!

Un aéronef Otter remonte la piste à rebours après un atterrissage sur la piste en pente de Launumu.
Un aéronef Otter remonte la piste à rebours après un atterrissage sur la piste en pente de Launumu.

Avion de type Otter stationné sur la piste de Launumu en Papouasie Nouvelle-Guinée.
Avion de type Otter stationné sur la piste de Launumu en Papouasie Nouvelle-Guinée.

La scène virtuelle a été conçue par Ken Hall et Tim Harris.

Les paysages et les nuages virtuels ont nécessité les programmes virtuels tels que REX, REX Texture Direct, Cumulus X, FTX Global, FTX Global Vector et Pilot’s FS Global 2010.

 

Solution radicale aux vents de travers dans la simulation de vol

Il n’y a pas d’aéronefs dans le ciel aux environs de l’aéroport virtuel de Port Moresby Jacksons (AYPY) aujourd’hui. Aucun aéronef sauf un, chargé d’une évacuation médicale.

Arrivée du Medevac vers l'aéroport de Port Moresby Jacksons (AYPY). Les vents empêchent un atterrissage normal.
Arrivée du Medevac vers l’aéroport de Port Moresby Jacksons (AYPY). Les vents empêchent un atterrissage normal.

Les vents soufflent du 240 degrés à 50G60 nœuds et les pistes sont orientées 14/32. Cela dépasse largement les vents de travers autorisés pour les aéronefs.

Mais l’équipage du Rockwell Shrike Commander 500S ne peut attendre que le vent se calme. Il doit atterrir dans les prochaines minutes pour espérer sauver la vie du patient.

L'aéroport de Port Moresby Jacksons (AYPY) est en vue en haut au centre de la photo.
L’aéroport de Port Moresby Jacksons (AYPY) est en vue en haut au centre de la photo.

Étant donné qu’il n’y a aucun trafic aérien autour de l’aéroport, le commandant de bord a signifié aux contrôleurs aériens son intention d’effectuer une approche sécuritaire mais qui sort de la norme établie.

L'avion est placé graduellement pour arriver en ligne droite vers le hangar de AYPY.
L’avion est placé graduellement pour arriver en ligne droite vers le hangar de AYPY.

L'avion s'aligne face au vent pour l'approche à travers les pistes.
L’avion s’aligne face au vent pour l’approche à travers les pistes.

Arrivant directement à travers les pistes, face au vent, l’équipage a l’intention de faire atterrir l’avion à quelques pieds d’un hangar. Le capitaine demande que quelqu’un ouvre la porte du hangar immédiatement. L’approche se terminera devant les portes du hangar, protégée du vent.

Trajet du Shrike Commander 500S vers le hangar de l'aéroport de Port Moresby Jacksons. La porte est ouverte pour l'arrivée.
Trajet du Shrike Commander 500S vers le hangar de l’aéroport de Port Moresby Jacksons. La porte est ouverte pour l’arrivée.

Il est plus sécuritaire d’arriver directement face au vent et d’entrer immédiatement dans le hangar. Il faut éviter de circuler avec des vents de 60 nœuds de travers.

Inutile de dire que le contrôleur aérien a refusé la demande. Le capitaine d’un avion est cependant le seul qui décide de la meilleure surface pour l’atterrissage, autant pour la sécurité des passagers que pour lui-même. Il procède avec son approche, après avoir clairement indiqué quelle trajectoire sera suivie.

Le Shrike Commander 500S au-dessus des habitations près de Port Moresby Jacksons.
Le Shrike Commander 500S au-dessus des habitations près de Port Moresby Jacksons.

Le problème principal pour l’approche est la turbulence mécanique de bas niveau causée par les vents en rafales de 60 nœuds.

Si l’ATC veut faire une plainte, le moment est arrivé : il est possible de prendre une photo de l’avion de même que de son immatriculation.

Vol par le travers de la tour de contrôle de AYPY.
Vol par le travers de la tour de contrôle de AYPY.

La vitesse-sol de l’avion se situe autour de 20 nœuds.

Le Shrike Commander 500S en approche à travers les pistes de l'aéroport de Port Moresby Jacksons. Les vents soufflent du 240 degrés à 50G60.
Le Shrike Commander 500S en approche à travers les pistes de l’aéroport de Port Moresby Jacksons. Les vents soufflent du 240 degrés à 50G60.

La vitesse stable des vents est actuellement plus sécuritaire que si les vents étaient du 240 à 35G60.

Vitesse-sol de 20 noeuds pour le Shrike Commander 500S en finale pour le hangar de Port Moresby Jacksons (AYPY).
Vitesse-sol de 20 noeuds pour le Shrike Commander 500S en finale pour le hangar de Port Moresby Jacksons (AYPY).

Toujours légèrement au-dessus de la piste et à une vitesse-sol entre 10 et 20 nœuds. L’anémomètre indique la vitesse du vent lui-même additionnée à celle de la vitesse-sol.

Vitesse indiquée 70 noeuds.
Vitesse indiquée 70 noeuds.

Vue frontale du Shrike Commander 500S pendant l'arrondi devant le hangar de AYPY.
Vue frontale du Shrike Commander 500S pendant l’arrondi devant le hangar de AYPY.

L’avion flotte comme une montgolfière ou presque!

Vue latérale du Shrike Commander 500S en finale pour le hangar à Port Moresby Jacksons.
Vue latérale du Shrike Commander 500S en finale pour le hangar à Port Moresby Jacksons.

Le Shrike Commander atterrira sous peu à Port Moresby Jacksons.
Le Shrike Commander atterrira sous peu à Port Moresby Jacksons.

Au moment où l’avion touche le sol, il arrête presqu’immédiatement. Il est même nécessaire de mettre les gaz pour atteindre le hangar, comme en témoigne les traînées blanches derrière l’appareil.

Dans la vraie vie, le touché des roues se serait fait dès que débute l’asphalte étant donné que la présence du hangar réduit un peu la vitesse du vent.

Atterrissage du Shrike Commander quelques pieds avant le hangar. Du pouvoir supplémentaire est nécessaire pour atteindre le hangar.
Atterrissage du Shrike Commander quelques pieds avant le hangar. Du pouvoir supplémentaire est nécessaire pour atteindre le hangar.

Quelques secondes après s’être posé, l’avion est dans le hangar, protégé du vent, et autant le médecin que le patient peuvent rapidement être conduits à l’hôpital.

Le Shrike Commander 500S dans le hangar à Port Moresby (AYPY).
Le Shrike Commander 500S dans le hangar à Port Moresby (AYPY).

Une fois dans le hangar, les vents virtuels sont ajustés à zéro, ce qui est logique, à moins que le mur opposé du hangar soit absent!

Vue verticale de l'aéroport de Port Moresby Jacksons (AYPY)
Vue verticale de l’aéroport de Port Moresby Jacksons (AYPY)

Il est maintenant temps de se préparer à affronter une autre tempête, celle de l’enquête qui suivra possiblement l’atterrissage!

(P.S. : Tim Harris et Ken Hall ont été les créateurs de cet aéroport virtuel de Port Moresby Jacksons. Ce dernier est vendu par Orbx et l’avion virtuel est venu par Carenado).

Un Antonov 225 avec la navette Bourane tente un atterrissage à Sumburgh en Écosse.

 

Je sais, Sumburgh n’est pas un aéroport destiné à recevoir l’Antonov 225, encore moins avec la navette russe Bourane comme cargo. En fait, cet aéronef et Sumburgh s’excluent mutuellement. Mais pour les amateurs de simulation de vol qui désirent tenter quelque chose d’insensé, c’est l’occasion. En faisant ce vol, il faut oublier le poids de l’aéronef sur la piste, l’espace insuffisant pour circuler et pour stationner et la distance requise pour redécoller. Il est probable qu’il devienne un avion-musée sur l’aéroport une fois atterri.

Il est bon, malgré tout, de se rappeler les performances exceptionnelles de cet appareil. Au cours d’une démonstration au-dessus du Bourget, il vira en maintenant un angle de 45° avec la navette Bourane de 62 tonnes fixée sur son fuselage. L’approche se fait à une vitesse étonnamment lente pour le poids de l’appareil et le freinage est reconnu comme étant remarquable. Vous avez le choix entre deux pistes (4700 à 4900 pieds). Oubliez la finale sécuritaire, il faut arriver en rase-mottes. Il est possible de télécharger l’Antonov 225 et la navette gratuitement. Quant à Sumburgh, il s’agit d’une création payante de ORBX.

Ce vol se retrouve également dans la section des vols virtuels insensés du présent site web.

Perdre les quatre moteurs sur un C-130 Hercules en simulation de vol

Le C-130 virtuel des Blue Angels circule à l'aéroport de High River, en Alberta.
Le C-130 virtuel des Blue Angels circule à l’aéroport de High River, en Alberta.

Dans le but de rajouter un vol pratiquement impossible dans la section des vols insensés de mon site web, j’ai tenté une panne graduelle des quatre moteurs du C-130 (Captain Sim) des Blue Angels.

Le C-130 Hercules des Blue Angels en attente derrière un monomoteur à l'aéroport de High River.
Le C-130 Hercules des Blue Angels en attente derrière un monomoteur à l’aéroport de High River.

Je sais que les mécaniciens des Blue Angels sont des professionnels, alors j’assume dès lors que la panne a été causée par une raison indépendante de cette équipe.

Décollage du Lockheed C-130 Hercules des Blue Angels de l'aéroport canadien de High River (CEN4) en Alberta.
Décollage du Lockheed C-130 Hercules des Blue Angels de l’aéroport canadien de High River (CEN4) en Alberta.

Le décollage se fait sans problème de l’aéroport canadien de High River (CEN4), un aéroport gratuit conçu par Vlad Maly et disponible chez ORBX. L’avion quitte la piste de 4150 pieds à destination de l’aéroport de Cœur d’Alène (KCOE) aux États-Unis.

Le premier moteur lâche. Ça ne cause pas de problème important. Mise en drapeau et la montée graduelle continue.

Le C-130 Hercules perd un premier moteur.
Le C-130 Hercules perd un premier moteur.

Le deuxième moteur s’arrête. Il faut oublier la destination initiale. Le déroutement se fera vers Bonners Ferry (65S) car la piste de 4000 pieds par 75 pieds de large est suffisante pour le C-130.

Le deuxième moteur vient de s'arrêter sur le C-130 Hercules.
Le deuxième moteur vient de s’arrêter sur le C-130 Hercules.

Double panne de moteurs sur le C-130 Hercules virtuel des Blue Angels.
Double panne de moteurs sur le C-130 Hercules virtuel des Blue Angels.

Le troisième moteur lâche. Une lente descente débute. Bonners Ferry n’est plus bien loin. L’aéroport est à une altitude de 2337 ft asl.

L’avion est volontairement piloté à une altitude un peu trop haute pour une approche normale, au cas où le quatrième moteur s’arrête. Quand trois moteurs s’arrêtent après le même plein d’essence, le pilote est autorisé à penser que ce qui alimente le quatrième moteur risque également de causer des problèmes.

Trois pannes de moteur sur ce C-130 Hercules virtuel des Blue Angels.
Trois pannes de moteur sur ce C-130 Hercules virtuel des Blue Angels.

Les montagnes les plus importantes sont maintenant passées.

Avion virtuel C-130 Hercules avec trois moteurs en panne en route vers l'aéroport de Bonners Ferry.
Avion virtuel C-130 Hercules avec trois moteurs en panne en route vers l’aéroport de Bonners Ferry.

La piste de Bonners Ferry (65S) est en vue.

Avion virtuel C-130 Hercules avec trois moteurs en panne, par le travers de la piste de Bonners Ferry.
Avion virtuel C-130 Hercules avec trois moteurs en panne, par le travers de la piste de Bonners Ferry.

Le quatrième moteur s’arrête. Les volets ne sont plus fonctionnels pour l’atterrissage.

Dès maintenant, il faut sauvegarder le vol virtuel à quelques reprises parce qu’il est possible que plusieurs tentatives d’atterrissage soient effectuées en vol plané. De là vient le plaisir du vol virtuel.

Les quatres moteurs sont maintenant en panne sur ce C-130 virtuel.
Les quatres moteurs sont maintenant en panne sur ce C-130 virtuel.

Le C-130 Hercules est désormais un gros planeur. Quand la même vitesse est conservée, l’avion perd un peu plus de 1000 pieds à la minute. L’inertie est importante.

Les roues ne seront sorties qu’au moment nécessaire car le train d’atterrissage augmente passablement la traînée.

De la position indiquée dans la photo ci-dessous, il est impossible d’arriver directement en ligne droite, l’avion passera au-dessus de la piste. L’avion semble pourtant à une altitude intéressante, mais il s’agit d’une illusion causée par le choix du format grand angle pour la capture d’écran.

L’avion est définitivement trop haut. Et impossible d’utiliser les volets pour augmenter le taux de descente.

Avion Lockheed C-130 Hercules virtuel avec quatre moteurs en panne en approche pour l'aéroport virtuel de Bonners Ferry (65S).
Avion Lockheed C-130 Hercules virtuel avec quatre moteurs en panne en approche pour l’aéroport virtuel de Bonners Ferry (65S).

Il faut choisir entre 1) des glissades sur l’aile 2) un virage de 360 degrés pour perdre de l’altitude ou 3) des virages à grande inclinaison en direction de la piste pour augmenter la distance à parcourir.

Quel serait votre choix?

Il n’y a jamais de méthode universelle. Le virage de 360 degrés est le plus risqué mais il peut s’avérer nécessaire. Cela a réussi au commandant Robert Piché aux Açores en 2001 avec son Airbus A330-200 en vol plané). Mais ici, je ne crois pas avoir suffisamment d’altitude en réserve pour compléter le 360 et atteindre la piste.

Il faudra plutôt faire quelques zigzags à grande inclinaison pour rallonger le trajet vers la piste. Pourquoi à grande inclinaison? Pour éviter de trop se rapprocher de l’aéroport tant que l’altitude n’est pas acceptable. Cette méthode devrait permettre de garder un œil en tout temps sur la piste pour vérifier si la pente est toujours bonne pour planer jusqu’à l’aéroport.

Virage de 40 degrés vers la droite en approche pour Bonners Ferry.
Virage de 40 degrés vers la droite en approche pour Bonners Ferry.

Virage grande inclinaison à gauche pour rallonger la distance vers l'aéroport de Bonners Ferry.
Virage grande inclinaison à gauche pour rallonger la distance vers l’aéroport de Bonners Ferry.

J’ai essayé les trois méthodes, toujours à partir du même vol sauvegardé (photo 10). Malgré plusieurs glissades sur l’aile, l’avion se rapproche trop vite de la piste et la vitesse finale se révèle trop élevée pour arrêter un C-130 sans volets ni inverseurs de poussée.

Le virage de 360 degrés, qu’il soit à droite ou à gauche, avec des angles différents et une vitesse raisonnable, fait perdre trop d’altitude à l’appareil. Indéniablement, l’aéronef se présentait toujours entre 200 et 300 pieds avant le seuil de piste.

Finalement, après quelques virages à grande inclinaison, l’avion a été positionné en finale avec la bonne vitesse et la bonne altitude.

Vue du Lockheed C-130 Hercules avec quatre moteurs en panne, en approche pour Bonners Ferry (65S).
Vue du Lockheed C-130 Hercules avec quatre moteurs en panne, en approche pour Bonners Ferry (65S).

Quelques ajustements à la dernière seconde, pour se réaligner au centre de la piste.

Vitesse 150 noeuds. Fin de virage vers Bonners Ferry.
Vitesse 150 noeuds. Fin de virage vers Bonners Ferry.

À 140 kts, mais sans inverser la poussée, toute la piste devrait être nécessaire pour arrêter l’appareil.

Vitesse 140 noeuds, enligné avec la piste de Bonners Ferry.
Vitesse 140 noeuds, enligné avec la piste de Bonners Ferry.

L’atterrissage s’est fait en douceur et l’aéronef s’est immobilisé un peu avant la fin de la piste.

Pour une raison que j’ignore, l’anémomètre indiquait toujours une dizaine de nœuds même lorsque l’avion était arrêté.

Avion-cargo C-130 immobilisé sur la piste de Bonners Ferry.
Avion-cargo C-130 immobilisé sur la piste de Bonners Ferry.

Avion Lockheed C-130 Hercules virtuel après l'atterrissage à l'aéroport de Bonners Ferry (65S).
Avion Lockheed C-130 Hercules virtuel après l’atterrissage à l’aéroport de Bonners Ferry (65S).

Avion C-130 Hercules immobilisé sur la piste de Bonners Ferry.
Avion C-130 Hercules immobilisé sur la piste de Bonners Ferry.

Essayez ce genre de vol en mode virtuel! Le pire qui puisse arriver est que vous ayez du plaisir!

Pour d’autres vols virtuels insensés, cliquez ici:

Vols virtuels insensés

Les jets régionaux CRJ-900ER et CRJ-700ER de Digital Aviation & Aerosoft

La cause des délais et les avantages pour le consommateur

Le jet régional virtuel de Bombardier CRJ-900ER (Aerosoft) portant les couleurs de la compagnie Alaska Airlines est en montée dans la région de Valdez en Alaska (ORBX)
Le jet régional virtuel de Bombardier CRJ-900ER (Aerosoft) portant les couleurs de la compagnie Alaska Airlines est en montée dans la région de Valdez en Alaska (ORBX)

Digital Aviation & Aerosoft ont finalement réussi à compléter leur projet de créer les aéronefs virtuels CRJ-900ER et CRJ-700ER de Bombardier. Après des mois de retard, les enthousiastes de simulation de vol peuvent enfin se réjouir. Le CRJ est surtout utilisé pour faire la liaison entre les aéroports et régions un peu plus éloignées et les grands centres. Il atteint rapidement son altitude de croisière et peut y rester longtemps, mais il n’est pas conçu pour être un aéronef très rapide.

La compagnie explique que dès le départ, elle a sous-estimé la complexité du projet et, à cause des délais encourus, s’est finalement fait rattraper par la compétition. Afin d’offrir un produit supérieur, elle a dû revoir ce qui était considéré comme presque terminé pour l’améliorer encore davantage avant la mise en marché.

Avion virtuel CRJ-700ER (Aerosoft) de la compagnie aérienne Alaska Airlines au décollage de l'aéroport virtuel de Valdez (ORBX)
Avion virtuel CRJ-700ER (Aerosoft) de la compagnie aérienne Alaska Airlines au décollage de l’aéroport virtuel de Valdez (ORBX)

Avec le CRJ-700ER et le CRJ-900ER, le consommateur peut d’ores et déjà bénéficier d’aéronefs dont l’extérieur a été complètement revu par rapport à ce qui était initialement prévu. Le directeur de projet indique que ce n’est que grâce aux encouragements et aux appuis de la communauté des amateurs de simulation de vol que la compagnie a décidé de compléter le projet, malgré les retards et les coûts additionnels.

Le premier vol avec le CRJ

Aéronef virtuel CRJ-900ER de la compagnie Air Nostrum au départ de l'aéroport virtuel de St-Martin (Fly Tampa St.Maarten)
Aéronef virtuel CRJ-900ER de la compagnie Air Nostrum au départ de l’aéroport virtuel de St-Martin (Fly Tampa St.Maarten)

Pour le premier vol, le manuel recommande de sélectionner et activer d’abord un des avions initialement fournis avec FSX, avec le moteur déjà démarré. Ensuite, le pilote virtuel sélectionne le CRJ de son choix. Cela évitera, selon les dires de la compagnie, de multiples problèmes.

Cockpit virtuel 2D

Le fait que le cockpit virtuel soit en 2D permet certainement de sauver quelques FPS. L’accès aux boutons et commandes à l’intérieur du cockpit est simplifié par l’usage des chiffres de 1 à 9 sur le clavier, chaque chiffre donnant un accès immédiat à la section choisie du tableau de bord et des commandes.

Navigation

Le pilote virtuel a accès à la base de données NavDataPro pour la navigation aérienne. Il s’agit de la base de données la plus utilisée dans le monde pour la navigation dans les aéronefs. Cependant, il y a possibilité d’utiliser Navigraph, pour ceux qui connaissent déjà ce logiciel.

Demande sur les processeurs de l’ordinateur

Avion virtuel CRJ-900ER (Aerosoft) de la compagnie U.S. Airways au décollage de l'aéroport virtuel de Denver (Flightbeam Studios)
Avion virtuel CRJ-900ER (Aerosoft) de la compagnie U.S. Airways au décollage de l’aéroport virtuel de Denver (Flightbeam Studios)

J’ai opéré les appareils sur différents aéroports virtuels tels que St. Maarten (Fly Tampa St. Maarten), Montréal international (Fly Tampa Montreal), Denver international (Flightbeam Studios) et Valdez (ORBX) sans éprouver d’ennuis quant aux processeurs du simulateur de vol. Il était hors de question de tenter d’utiliser l’aéroport de Courchevel (LLH Creations), à cause de sa trop courte piste en pente, mais le survol à basse altitude et haute vitesse n’a causé aucun problème quant aux FPS.

Un avion virtuel CRJ-700ER (Aerosoft) de la compagnie Air France HOP est en vol au-dessus de l'aéroport virtuel de Courchevel en France (LLH Creations)
Un avion virtuel CRJ-700ER (Aerosoft) de la compagnie Air France HOP est en vol au-dessus de l’aéroport virtuel de Courchevel en France (LLH Creations)

Pilotage à basse vitesse

Le CRJ offre une bonne marge de manœuvre quant au pilotage à basse vitesse. Cependant, dû au positionnement des moteurs, le nez de l’avion se soulève rapidement lorsque la manette des gaz est ramenée à zéro. Dans une descente progressive, cela ne cause pas de problème, mais si la manœuvre est faite en courte finale, alors que l’avion est encore au-dessus de 50 pieds, le nez se soulèvera rapidement et la vitesse baissera considérablement, ce qui peut provoquer un décrochage.

Les aérofreins

Il ne faut pas trop compter sur les aérofreins pour ralentir le CRJ. Ils sont d’une efficacité limitée, autant dans la vraie vie que dans le vol virtuel.

Tendance au flottement

Si l’avion se présente un peu au-dessus de la vitesse recommandée au-dessus du seuil de piste, il flotte sur une longue distance avant de finalement entrer en contact avec la piste.

Distance de décollage et d’atterrissage

Un avion virtuel CRJ-900ER de la compagnie Air Canada (Aerosoft) est en approche pour l'aéroport international Pierre-Elliott-Trudeau de Montréal (Fly Tampa Montréal)
Un avion virtuel CRJ-900ER de la compagnie Air Canada (Aerosoft) est en approche pour l’aéroport international Pierre-Elliott-Trudeau de Montréal (Fly Tampa Montréal)

Le CRJ se satisfait de pistes relativement courtes pour ses opérations. Le CRJ-700 nécessite 5040 pieds pour le décollage (poids maximal) et l’atterrissage (poids maximal autorisé), dans des conditions atmosphériques standard. Le CRJ-900 a, quant à lui, besoin de 6060 pieds pour le décollage et de 5260 pieds pour l’atterrissage. La distance pouvant être couverte se situe entre 1300 et 1400 nm.

Programmes faciles à utiliser

Pour le CRJ, Digital Aviation & Aerosoft ont conçu des gestionnaires qui permettent de choisir le nombre de passagers désirés et le cargo, de même que de calculer le poids en carburant, le centre de gravité et le montant de compensateur nécessaire pour le décollage. Il y a même une fonction FS2 Crew si désirée. Un autre gestionnaire facilite l’installation de nouvelles couleurs de compagnies.

L’arrivée de ce jet régional dans le monde de la simulation de vol était attendue depuis longtemps; certains n’y croyaient plus, incluant les gens de Digital Aviation & Aerosoft eux-mêmes. Les amateurs vont enfin pouvoir mettre la main sur un jet régional virtuel de grande qualité et de classe mondiale.

Pour d’autres articles dans la catégorie “Simulation de vol”, cliquez sur le lien suivant : Simulation de vol

Du Chili vers Rothera, Antarctique, avec le Twin Otter de la société BAS et le simulateur de vol FSX

Vue aérienne de la station de recherche de Rothera en Antarctique.
Vue aérienne de la station de recherche de Rothera en Antarctique.

Pour ce vol, vous avez obligatoirement besoin du logiciel de simulation de vol Antarctica X créé par Aerosoft.

Les Twin Otters et le Dash-7 de la société BAS sont entretenus à Calgary, au Canada, et volent vers l’Antarctique durant l’été austral, entre Octobre et Mars. Donc si vous souhaitez simuler un vol avec un Twin Otter ou un Dash-7 entre le Chili et l’Antarctique, choisissez un de ces mois pour plus de réalisme.

Étant donné qu’il serait un peu long de faire tous les vols virtuels normalement effectués du Canada vers l’Antarctique, j’ai plutôt choisi d’effectuer les trois derniers vols, pour voir de quoi le paysage a l’air.

Le Twin Otter est normalement approuvé pour un décollage avec poids maximal de 12,500 livres. Mais avec des skis pesant 800 livres et du carburant supplémentaire requis pour des trajets anormalement longs, la société BAS (British Antarctic Survey) s’est organisée pour faire certifier leurs Twin Otters à un poids maximal de 14,000 livres. Même à ce poids, l’avion peut toujours continuer à voler sur un moteur.

Le premier vol consiste en un trajet entre l’aéroport de La Florida (SCSE) au Chili et l’aéroport de El Tepual de Puerto Montt (SCTE) également au Chili. La Florida est une escale obligée pour ravitaillement en carburant.

Décollage de La Florida, Chili, après un plein d'essence.
Décollage de La Florida, Chili, après un plein d’essence.

Ce vol avec le Twin Otter dure environ 4 :25 heures (696 nm) avec un cap de 185 degrés.

En vol vers El Tepual de Puerto Montt, Chili.
En vol vers El Tepual de Puerto Montt, Chili.

Pour améliorer le paysage, je me suis servi des logiciels FTX Global, FTX Vector et Pilot’s FS Global 2010. Orbx a également retravaillé l’aéroport de El Tepual de Puerto Montt pour inclure quelques personnes, des avions et de nouveaux bâtiments. Cela rend la destination plus intéressante.

Twin Otter en finale pour El Tepual de Puerto Montt, Chili.
Twin Otter en finale pour El Tepual de Puerto Montt, Chili.

Prêt pour le ravitaillement à l'aéroport de El Tepual de Puerto Montt, Chili
Prêt pour le ravitaillement à l’aéroport de El Tepual de Puerto Montt, Chili

Le prochain vol se fait entre l’aéroport de El Tepual de Puerto Montt (SCTE) et celui de Punta Arenas (SCCI), les deux au Chili.

Avion Twin Otter au décollage vers Punta Arenas, Chili.
Avion Twin Otter au décollage vers Punta Arenas, Chili.

Ce vol, effectué à travers les Andes, demande absolument une belle météo. Vous devrez monter jusqu’à 17,000 pieds pour faire un trajet direct entre les deux aéroports.

Twin Otter au-dessus des Andes en montée pour 17,000 pieds
Twin Otter au-dessus des Andes en montée pour 17,000 pieds

Des vues spectaculaires s’offrent souvent au pilote virtuel durant le trajet. Le Twin Otter de la BAS n’est piloté que par un seul pilote mais celui-ci est toujours accompagné d’une autre personne.

Avion Twin Otter en rapprochement pour Punta Arenas, Chili.
Avion Twin Otter en rapprochement pour Punta Arenas, Chili.

N’oubliez pas d’appauvrir le mélange air/essence durant la montée. Utilisez également de l’oxygène supplémentaire (!!) si vous ne voulez pas commencer à divaguer et voler en cercles après une heure de vol. Pensez à enrichir le mélange lors de la descente, considérant que vous perdrez pratiquement 17,000 pieds.

Plein de carburant à Punta Arenas, Chili.
Plein de carburant à Punta Arenas, Chili.

La version originale de l’aéroport Punta Arenas, telle qu’elle se trouve dans FSX, n’est vraiment pas très intéressante. L’aéroport est dénudé, ne présentant qu’un seul bâtiment et un VOR.

Mais étant donné que le pilote de la société BAS effectue toujours ce trajet obligatoire avant de s’envoler pour l’Antarctique, j’ai choisi de ne pas changer le trajet. Le vol vers Punta Arenas a suivi une direction moyenne de 164 degrés et la durée a été d’environ 4 :28 heures. Vous pouvez bien sûr accélérer le processus une fois l’aéronef établi en vol de croisière.

Le dernier vol a été de Punta Arenas, au Chili, vers Rothera en Antarctique.

Avion Twin Otter en route pour l'aéroport de Rothera en Antarctique.
Avion Twin Otter en route pour l’aéroport de Rothera en Antarctique.

Le Twin Otter prend entre six et sept heures, sur un cap de 162 degrés, pour couvrir la distance entre Punta Arenas (SCCI) et Rothera (EGAR).

Au-dessus des sommets enneigés du Chili, en route vers Rothera, Antarctique
Au-dessus des sommets enneigés du Chili, en route vers Rothera, Antarctique

Transport d'une réserve de carburant en route pour Rothera, Antarctique.
Transport d’une réserve de carburant en route pour Rothera, Antarctique.

La piste de l’aéroport de Rothera est faite de gravier et mesure 2953 pieds, suffisamment longue pour le Twin Otter et le Dash-7. Avant d’effectuer le vol, allez dans votre fichier de simulateur de vol « aerosoft/Antarctica X » et cliquez sur l’option LOD 8.5 (le programme est réglé de base sur un LOD 4.5). Vous obtiendrez ainsi une définition supérieure lorsque vous approchez l’Antarctique.

La station de recherche antarctique de Rothera est en vue
La station de recherche antarctique de Rothera est en vue

Avion Twin Otter en finale pour Rothera, Antarctique.
Avion Twin Otter en finale pour Rothera, Antarctique.

La revue Airliner World a publié en mars 2017 un excellent article sur les opérations de la société BAS en Antarctique. On y trouvait de multiples photos très intéressantes et des explications détaillées sur ce que doivent anticiper les pilotes et le personnel travaillant pour la société BAS. J’ai comparé l’aéroport virtuel de Rothera avec les photos du vrai aéroport fournies par Airliner World et j’ai été étonné par le niveau de ressemblance et la précision des détails.

Avion Twin Otter de la British Antarctic Survey atterrissant sur la piste de Rothera, Antarctique
Avion Twin Otter de la British Antarctic Survey atterrissant sur la piste de Rothera, Antarctique

La société BAS est toujours prête pour les surprises : « Elle maintien un inventaire de pièces de $5m, incluant un moteur de rechange pour chaque aéronef, des hélices supplémentaires et des composants pour le train d’atterrissage ».

Avion Twin Otter de la BAS après un atterrissage sur la piste de Rothera, Antarctique
Avion Twin Otter de la BAS après un atterrissage sur la piste de Rothera, Antarctique

« Un nouveau développement pour l’Air Unit a été son association avec la RAF, utilisant un avion de transport C-130 Hercules pour parachuter du matériel sur le champs d’opérations. Ils volent de Punta Arenas et parachutent du carburant pour aider à notre programme de recherche sur le Ronne Ice Shelf. […] Cela fait partie de le système d’entraînement et la précision de leur parachutage est très impressionnante. Ils peuvent parachuter 250 barils de carburant, pensez au nombre de voyages de Twin Otter que cela aurait représenté pour nous (48 ou plus de 400 heures de vol) ».

Le hangar principal de Rothera, Antarctique.
Le hangar principal de Rothera, Antarctique.

La compagnie Aerosoft a fait un excellent travail pour répliquer Rothera, la station de recherche principale de la société BAS en Antarctique. Le hangar principal peut accomoder en même temps trois Twin Otters et un Dash-7.

Intérieur du hangar principal de la station de recherche de Rothera, Antarctique.
Intérieur du hangar principal de la station de recherche de Rothera, Antarctique.

Lorsque votre vol sera complété, n’oubliez pas de cliquer de nouveau sur LOD 4.5 pour l’Antarctique dans votre fichier aerosoft/Antarctica X.

Pour d’autres vols virtuels standards, cliquez sur le lien suivant :

Vols virtuels standards

Pour d’autres articles dans la catégorie “Simulation de vol”, cliquez sur le lien suivant : Simulation de vol

Simulation de vol (FSX): un C-17A à l’aéroport de Block Island (KBID) aux États-Unis

Alex Geoff, le concepteur de l’aéroport virtuel de Block Island (KBID) de ORBX a demandé aux enthousiastes de simulation de vol de tenter d’utiliser le plus gros appareil possible sur cet aéroport dont la piste ne fait que 2502 pieds.

Avion militaire canadien C17-A prêt pour le décollage piste 10 à l'aéroport virtuel de Block Island (KBID) aux États-Unis (FSX)
Avion militaire canadien C17-A prêt pour le décollage piste 10 à l’aéroport virtuel de Block Island (KBID) aux États-Unis (FSX)

Naturellement, il est ici question de vol virtuel. Il faut donc pardonner l’atterrissage d’un appareil qui, dans la vraie vie, détruirait la piste sans compter les nombreux arbres qu’il faudrait tailler si l’avion utilisait la voie de circulation après l’atterrissage. Et j’oubliais également les pilotes et le gérant d’aéroport qu’il faudrait renvoyer suite à l’autorisation de la manœuvre.

Le contexte du vol étant donc présenté, voici les données qui permettront aux amateurs de vol virtuel de retenter le circuit à l’aéroport de Block Island avec un C-17A de Virtavia.

Contrairement aux appareils de type Cessna qui utilisent généralement l’aéroport, la masse de mon C-17A militaire canadien était de 405,000 livres. Le carburant a été ajusté à 50% dans les réservoirs extérieurs et intérieurs. Les deux pilotes ont accepté de sauter le dîner, de façon à ne pas ajouter de poids supplémentaire à l’appareil…

Les volets étaient ajustés à 2/3. J’ai reculé l’avion jusqu’en tout début de piste, appliqué les freins, pousser la manette des gaz à fond, attendu la montée du régime maximal, relâché les freins et profité de l’effet de sol pour arracher l’appareil du sol au tout dernier moment. Le décollage s’est fait sur la piste 10 par vent de travers de 12 nœuds et avec un angle de 70 degrés par rapport à la piste.

Avion militaire canadien C17-A décolle piste 10 à l'aéroport virtuel de Block Island (KBID) aux États-Unis (FSX)
Avion militaire canadien C17-A décolle piste 10 à l’aéroport virtuel de Block Island (KBID) aux États-Unis (FSX)

Par la suite, quatre virages à droite successifs ont été effectués : 190°, 280°, 010° et 100°. Lors du vol, l’altitude de l’appareil n’a pas dépassé 2000 pieds.

Avion militaire canadien C17-A vire vent arrière piste 10 à l'aéroport virtuel de Block Island (KBID) aux États-Unis (FSX)
Avion militaire canadien C17-A vire vent arrière piste 10 à l’aéroport virtuel de Block Island (KBID) aux États-Unis (FSX)

Les roues et les pleins volets étaient sortis en base de façon à ne pas avoir à faire trop de réglages en finale.

Avion militaire canadien C17-A en base piste 10 à l'aéroport virtuel de Block Island (KBID) aux États-Unis (FSX)
Avion militaire canadien C17-A en base piste 10 à l’aéroport virtuel de Block Island (KBID) aux États-Unis (FSX)

Avion militaire canadien C17-A en longue finale piste 10 à l'aéroport virtuel de Block Island (KBID) aux États-Unis (FSX)
Avion militaire canadien C17-A en longue finale piste 10 à l’aéroport virtuel de Block Island (KBID) aux États-Unis (FSX)

Avion militaire canadien C17-A en finale piste 10 à l'aéroport virtuel de Block Island (KBID) aux États-Unis (FSX)
Avion militaire canadien C17-A en finale piste 10 à l’aéroport virtuel de Block Island (KBID) aux États-Unis (FSX)

La vitesse est éventuellement descendue à 128 nœuds et, alors que l’appareil était encore à deux pieds dans les airs, les aérofreins ont été sortis. Les inverseurs de poussée ont été activés au maximum (pression continue sur F2) juste avant de toucher le sol puisqu’ils prennent du temps à faire effet. Normalement ça ne se fait pas et vous pouvez donc activer les inverseurs directement lors du toucher au sol, vous ne perdrez qu’une seconde. Les roues du train principal ont touché le tout début de la piste et le freinage maximal a alors été engagé.

Avion militaire canadien C17-A atterri piste 10 à l'aéroport virtuel de Block Island (KBID) aux États-Unis (FSX)
Avion militaire canadien C17-A atterri piste 10 à l’aéroport virtuel de Block Island (KBID) aux États-Unis (FSX)

Il a été possible de sortir sur la voie de circulation sans avoir à remonter la piste. L’environnement passant encore en deuxième, quelques arbres avaient été taillés pour ne pas qu’il y ait contact avec les ailes de l’appareil.

Avion militaire canadien C17-A quitte la piste 10 à l'aéroport virtuel de Block Island (KBID) aux États-Unis (FSX)
Avion militaire canadien C17-A quitte la piste 10 à l’aéroport virtuel de Block Island (KBID) aux États-Unis (FSX)

Avion militaire canadien C17-A sur la voie de circulation à l'aéroport virtuel de Block Island (KBID) aux États-Unis (FSX)
Avion militaire canadien C17-A sur la voie de circulation à l’aéroport virtuel de Block Island (KBID) aux États-Unis (FSX)

Si vous tentez l’expérience, pensez à sauvegarder le vol lorsque vous êtes en finale, au cas où vous ne seriez pas satisfait de votre performance à l’atterrissage (avion endommagé, maisons et véhicules du voisinage détruits, incendie d’une partie de la forêt au bout de la piste 10, victimes collatérales, etc.).

Avion militaire canadien C17-A à l'aéroport virtuel de Block Island (KBID) aux États-Unis (FSX)
Avion militaire canadien C17-A à l’aéroport virtuel de Block Island (KBID) aux États-Unis (FSX)

Pour d’autres articles dans la catégorie “Simulation de vol”, cliquez sur le lien suivant : Simulation de vol

Bonne chance!