Categories
Flight Simulation

Around the world in flight simulation (6)

The sixth leg of this world tour of flight simulation continues with a journey from the Molde (ENML) airport to the Sandane/Anda (ENSD) airport in southern Norway.

Ready for departure from Molde (ENML) virtual airport to Sandane (ENSD) airport.
Ready for departure from Molde (ENML) virtual airport to Sandane (ENSD) airport.

The destination can’t accommodate a private jet like the Cessna Citation Longitude, as runway 08/26 is only 3182 feet long. A good old light twin-engine plane, repainted a hundred times over, will have to be rented for the trip, and we’ll just have to hope the engines hold out.

Enroute to the virtual Sandane airport (ENSD) in Norway with Microsoft Flight Simulator.
Enroute to the virtual Sandane airport (ENSD) in Norway with Microsoft Flight Simulator

The mountains of Norway come into view, and the ascent continues gradually to ensure that the highest peaks along the route pose no problems.

The navigraph tool for flight simulation and the VFR map from ENML to ENSD.
The navigraph tool for flight simulation and the VFR map from ENML to ENSD.

Above, a view of the aircraft’s instrument panel as it climbs, with a Navigraph map showing the route flown in visual flight. Virtual weather is integrated in real time whenever a new weather report is issued by a ground observation station around the world.

View of the Norwegian mountains from the pilot seat
View of the Norwegian mountains from the pilot seat
Morning sun over the Norwegian mountains with Microsoft Flight Simulator.
Morning sun over the Norwegian mountains with Microsoft Flight Simulator.

Another sunrise view that brings Norway’s magnificent mountain landscape to life.

Approaching the Sandane virtual airport in flight simulation.

Approaching the Sandane virtual airport in flight simulation.

We are now almost at our destination. The plane is in left base for runway 08 at Sandane/Alda airport.

Turning final for runway 08 at Sandane (ENSD) virtual airport in Norway.
Turning final for runway 08 at Sandane (ENSD) virtual airport in Norway.

Over the still-frozen Innvikfjorden, the final turn is made to stabilize the aircraft on final runway 08. On short final, there’s a cliff just short of threshold 08, and a difference in runway height to take into account for the landing.

View of the Sandane (ENSD) virtual airport with Microsoft Flight Simulator.
View of the Sandane (ENSD) virtual airport with Microsoft Flight Simulator.

Above, a view of the Sandane/Alda virtual airport (ENSD) using Microsoft Flight Simulator. There is no margin for error, as the two runway thresholds are bordered by a cliff and a stretch of water.

Help for parking is offered at the Sandane (ENSD) virtual airport in Norway.
Help for parking is offered at the Sandane (ENSD) virtual airport in Norway.

Service at the airport is excellent. Two employees are waiting to help us park our aircraft.

Sandane is known for its magnificent panoramas, waterfalls, Briksdalsbreen glacier and horseback riding. The village is nestled inland from the Gloppe Fjord. If you’re traveling there in summer, you’ll need to be prepared for a fair amount of precipitation.

The next flight is from Sandane to Stockholm-Bromma in Sweden with a Beechcraft King Air 350I which has not flown for a long time. We’ll have to fly over the high mountains of the Jostedalsbreen Nasjonalpark   before reaching our destination.

Click on the link for more flight simulator flights around the world   on my blog.

Categories
Flight Simulation

Grosse-Île airstrip and MSFS 2020.

Close-up view of the Grosse-île runway and the area with the Microsoft flight simulator (MSFS 2020).
Close-up view of the Grosse-île runway and the area with the Microsoft flight simulator (MSFS 2020).

It took the Microsoft Flight Simulator (MSFS 2020) for me to discover this landing strip on Grosse-Île. Even the Canada Flight Supplement (CFS) from Nav Canada does not mention it.

Decades ago, Canadian authorities used this island in the middle of the St. Lawrence River as a quarantine site for immigrants arriving in Canada. Many Irish people, among others, made an obligatory stop on this strip of land before being allowed to continue their journey to Canada.

At one time, a section of the island was reserved for Canadian and American researchers for their top secret research on Anthrax.The most amazing thing about reading the article is realizing that the entire production of this bacteriological weapon (439 liters) was mixed with formaldehyde and put in barrels that were dumped somewhere in the St. Lawrence River when it was decided that it would no longer be useful, as the Second World War took a turn in favor of the Allies. It seems to me that formaldehyde does not prevent barrels from rusting, but hey… back to the point.

Today, tourists can visit Grosse Île and the Irish Memorial National Historic Site during the summer months using the services of Croisières Lachance, located in Berthier-sur-Mer.

Where is Grosse-Île located? In the province of Quebec, a little east of Quebec City. It is one of the many islands that you can fly over once you have left Île d’Orlans behind. Below, a screenshot from Google Maps.

Grosse-Île in Quebec on Google Maps.
Grosse-Île in Quebec on Google Maps.

The satellite image below clearly shows that this is not an invention. Microsoft designates this runway as CYMN Montmagny: a mistake that one can easily live with, since by giving an official code to this Grosse-Île runway, the pilot can use it as a navigation point in his GPS.

Satellite view of Grosse-Île and its runway.
Satellite view of Grosse-Île and its runway.

So, let’s use a small Cessna in US Coast Guard colors to make a virtual flight from Quebec City airport (CYQB) to Grosse-Île (CYMN). It was a bit chilly on this February day in Quebec City, so I decided to transport us to July for this flight, adding a few cumuliform clouds in the process.

Leaving Quebec City for Grosse-Île with MSFS 2020.
Leaving Quebec City for Grosse-Île with MSFS 2020.

This short flight will allow us to fly over Île d’Orlans, Île Madame (owned by Laurent Beaudoin, former major shareholder of Bombardier), Île au Ruau  (purchased in 2019 by the rich owner of the Gildan empire) to finally arrive at Grosse-Île.

Approaching Grosse-Île over the St Lawrence Seaway with the MSFS 2020 flight simulator.
Approaching Grosse-Île over the St Lawrence Seaway with the MSFS 2020 flight simulator.

The picture below shows the aircraft on a right base for the Grosse-Île runway. I do not know the official dimensions of this dirt airstrip, but it can easily accept a Cessna aircraft such as ours.

Cessna in base for the Grosse-Île runway with the MSFS 2020 flight simulator.
Cessna in base for the Grosse-Île runway with the MSFS 2020 flight simulator.

Below, the aircraft is on final for the runway.

On final for the Grosse-Île runway.
On final for the Grosse-Île runway.

A final screenshot shows the Cessna taxiing down the runway after landing. As you can see, the runway can accommodate much larger aircraft. If you want to make a real flight to this island, find out beforehand about the condition of the runway and the restrictions surrounding its use by visiting pilots.

Cessna aircraft on Grosse-Île after the landing.
Cessna aircraft on Grosse-Île after the landing.

Click on the link for more flight simulation experiences on my blog.

Categories
Flight Simulation

Challenging virtual flight in Idaho using MSFS 2020

MSFS 2020 map for the flight 3U2 to C53 in United States
MSFS 2020 map for the flight 3U2 to C53 in United States

The challenging virtual flight is from Johnson Creek Airport (3U2) to the Lower Loon Creek Airstrip (C53) in the United States, using the MSFS 2020 flight simulator. The software map shows the type of aircraft chosen, a CubCrafters X Cub on floats, as well as the trajectory over the Idaho mountains.

The idea of using an amphibious aircraft for this flight is a bit far-fetched, but the goal is to make the pilot’s job a little more difficult by adding weight to the aircraft.

Johnson Creek (Yellow Pine) airport 3U2 with MSFS 2020
Johnson Creek (Yellow Pine) airport 3U2 with MSFS 2020

Johnson Creek Airport (3U2) is a creation of Creative Mesh. It is charming, with tents here and there planted near the planes. The runway is 3480 feet long by 150 feet wide. It is oriented on a 17/35 axis and still quite high at 4960 feet above sea level (MSL).

Amphibian CubCrafters X Cub ready for departure at the Johnson Creek 3U2 virtual airport with MSFS 2020.
Amphibian CubCrafters X Cub ready for departure at the Johnson Creek 3U2 virtual airport with MSFS 2020.

Given the departure altitude, one must not forget to adjust the air/fuel mixture so as not to lose power on takeoff, especially since there is a mountain at the end of the runway and the floats increase the weight of this small aircraft. The air is also thinner as the flight takes place in summer and at a high altitude; this represents another obstacle to the aircraft’s performance.

Avoiding obstacles after take-off from the 3U2 Johnson Creek virtual airport using MSFS 2020.
Avoiding obstacles after take-off from the 3U2 Johnson Creek virtual airport using MSFS 2020.

The mountains near the runway present a significant obstacle. The virtual pilot must use the best possible angle of climb without worrying about the route recommended by the GPS. The flaps are kept slightly extended during the initial climb.

Flying over the Idaho mountains in flight simulation with MSFS 2020.
Flying over the Idaho mountains in flight simulation with MSFS 2020.

Once at a safe altitude and back on the GPS suggested route, the view of Idaho’s spectacular mountains is more enjoyable. Throughout the climb, the air-fuel mixture and altimeter (“B” on MSFS 2020) have to be adjusted.

CubCrafters X Cub floatplane over the Idaho mountains in flight simulation MSFS 2020
CubCrafters X Cub floatplane over the Idaho mountains in flight simulation MSFS 2020

An altitude of almost 10,000 feet ASL makes it possible to fly over the mountains without risk of collision.

Descending in the valley towards the ID8 Marble Creek airport in Idaho in fligh simulation.
Descending in the valley towards the ID8 Marble Creek airport in Idaho in fligh simulation.

At the right moment, when the small surrounding airports and the river appear on the GPS, we leave our GPS road, until now in straight line, and we align in the valley to fly over the river until our destination, avoiding the surrounding mountains. In the photo above, the descent has already begun, with a necessary gradual adjustment of the air-fuel mixture.

Flying over the (ID8) Marble Creek airport in Idaho using the MSFS 2020 flight simulator.
Flying over the (ID8) Marble Creek airport in Idaho using the MSFS 2020 flight simulator.

We fly over a first small airport. The picture above shows the planes parked on the runway of Marble Creek airport (ID8), which dimension is 1160 x 20 feet. For those which would be interested in trying a landing there, the orientation of the runway is 03/21 and the altitude of 4662 feet MSL.

Flying over the 2U8 Thomas Creek Airport in Idaho using the MSFS 2020 flight simulator.
Flying over the 2U8 Thomas Creek Airport in Idaho using the MSFS 2020 flight simulator.

On the way towards our final destination, we also fly at low altitude over the Thomas Creek (2U8).

Following the river towards the C53 Lower Loon Creek airstrip using the MSFS 2020 flight simulator.
Following the river towards the C53 Lower Loon Creek airstrip using the MSFS 2020 flight simulator.

The mountains on either side of the river require close attention, as the poor performance of a small aircraft equipped with floats does not allow for easy correction of navigational errors.

By the time the runway suddenly becomes visible, the plane will not be on course but 90 degrees off the ideal course. It will be necessary to quickly turn left into the valley, make a fairly sharp 180-degree turn to the right to avoid the mountains, and then get back on course to land. It is only at this point that the landing gear will be extended.

On final for Lower Loon Creek airstrip with MSFS 2020
On final for Lower Loon Creek airstrip with MSFS 2020

The photo above shows the aircraft on final for the Lower Loon Creek dirt and grass runway (C53). It is located at 4084 feet MSL and is only 1200 feet long by 25 feet wide. Note that the approach should be made on runway 16 when possible.

Amphibian CubCrafters X Cub rolling down the C53 Lower Loon Creek airstrip in Idaho after landing.
Amphibian CubCrafters X Cub rolling down the C53 Lower Loon Creek airstrip in Idaho after landing.

As always, a stabilized aircraft on final makes landing easier, regardless of the conditions.

Amphibian CubCrafters X Cub parked at the C53 Lower Loon Creek airstrip using MSFS 2020 flight simulator.
Amphibian CubCrafters X Cub parked at the C53 Lower Loon Creek airstrip using MSFS 2020 flight simulator.

We park the plane and rest a bit. Today, there is no one else here. But that’s not always the case in real life, as this video of a landing at Lower Loon Creek shows it.

Click on the link for more challenging virtual flights on my blog.

Categories
Flight Simulation

Elk River (NC06) to Mountain Air County Club (2NC0) with MSFS 2020.

Ready for departure at the Elk River airport (NC06) created by Cloud Studio.
Ready for departure at the Elk River airport (NC06) created by Cloud Studio.

Today’s twenty-minute virtual flight is conducted using Microsoft MSFS 2020 flight simulation software. The virtual airport at Elk River (NC06)   in the United States, modeled here by Pilot’s, is located at approximately 3468 feet (ft) above sea level (MSL). Its sloped 12/30 runway can accommodate many types of aircraft as its dimensions are still 4600 feet long by 75 feet wide. A golf course is located near the airport facilities.

The sloped runway of the Elk River airport (NC06) with the MSFS 2020 flight simulator.
The sloped runway of the Elk River airport (NC06) with the MSFS 2020 flight simulator.

In the distance, the end of runway 30 can be seen rising rapidly. The trip to Mountain Air County Club Airport (2NC0), modeled by Cloud Studio, is made with a single engine Cubcrafters NX Cub.

Enroute towards the Mountain Air County Club (2NC0) airport from Elk River (NC06) with MSFS 2020.
Enroute towards the Mountain Air County Club (2NC0) airport from Elk River (NC06) with MSFS 2020.

In direct flight with GPS, the virtual pilot will have to climb at around 7000 feet msl to avoid the surrounding mountains. It is therefore important to adjust the air/fuel mixture during climb and descent for the destination. Also, don’t forget to adjust the altimeter (press “B”) as you move away from the point of departure. Near the summits, you will experience mechanical turbulence, which is normal.

Aerial view of the Mountain Air County Club (2NC0) airport created by Pilot's.
Aerial view of the Mountain Air County Club (2NC0) airport created by Pilot’s.

The photo above shows the virtual airport of Mountain Air County Club (2NC0) with the MSFS 2020 flight simulator. The sloped runway is 2900 feet long and only 50 feet wide. A golf course surrounds this airport located at 4432 feet MSL. Since the winds are light, the approach will be on runway 14.

On final for the sloped runway of the Mountain Air County Club (2NC0) airport using MSFS 2020.
On final for the sloped runway of the Mountain Air County Club (2NC0) airport using MSFS 2020.

On final approach, it is easy to see the uphill angle of this airstrip, which is slightly more damaged than the one at Elk River.

A view of the cliff at the threshold of runway 32 at the 2NC0 Mountain County Air Club airport created by Pilot's pour MSFS 2020.
A view of the cliff at the threshold of runway 32 at the 2NC0 Mountain County Air Club airport created by Pilot’s pour MSFS 2020.

As we continue to taxi to the end of runway 14, we notice the cliff that awaits the pilot who has not properly prepared his landing. No forgiveness!

View from above of the Mountain Air County Club airport 2NC0 with the MSFS 2020 flight simulator.
View from above of the Mountain Air County Club airport 2NC0 with the MSFS 2020 flight simulator.

An elevated view shows the threshold of runway 14 and the buildings associated with the golf club. A few golf loving pilots have already parked their aircraft to the left of runway 14. For this screenshot, I used the excellent X-BOX drone.

Buildings and flowers at the Mountain Air County Club airport (2NC0) created by Pilot's for MSFS 2020.
Buildings and flowers at the Mountain Air County Club airport (2NC0) created by Pilot’s for MSFS 2020.

A final photo shows the buildings and flowers associated with the golf club. The bird recordings are easily heard, which enhance the scene. Flight simulation enthusiasts wishing to repeat the experience should do so under VFR conditions to keep an eye on the mountain tops during the approach.

Click on the link for more challenging virtual flights under MSFS 2020 and FSX on my blog.

Categories
Aviation Pioneers

Books : Our Transatlantic Flight.

Our transatlantic flight, by Sir John Alcock and Sir Arthur Whitten Brown
Our transatlantic flight, by Sir John Alcock and Sir Arthur Whitten Brown

Newfoundland

Before 1949, Newfoundland was called Dominion of Newfoundland   and was part of the British Commonwealth . In 1949, it became a Canadian province.

The first non-stop flight eastward across the Atlantic.

The book « Our transatlantic flight » tells the story of the historic flight that was made in 1919, just after the First World War, from Newfoundland to Ireland. There was a 10,000 £ prize offered by Lord Northcliffe   from Great Britain for whoever would succeed on the first non-stop flight eastward across the Atlantic.

A triumph for British aviation

Sir John Alcock and Sir Arthur Whitten Brown , respectively pilot and navigator, wrote the story of their successful flight in this book which was published in 1969. The followings are pilot quotes from the book : « For the first time in the history of aviation the Atlantic had been crossed in direct, non-stop flight in the record time of 15 hours, 57 minutes. » (p.13) « The flight was a triumph for British aviation; the pilot and navigator were both British, the aircraft was a Vickers-Vimy   and the twin engines were made by Rolls-Royce. » (p.13)

Sir John Alcock and Sir Arthur Whitten Brown
Sir John Alcock and Sir Arthur Whitten Brown

As with all great human achievements, a very good flight planning and some luck was needed to make this flight a success. If there was an engine failure during the flight, even if the planning was excellent, there was only one outcome : downward.

In order to make the flight, Alcock and Brown boarded a ship from England bound to Halifax. They then headed to Port aux Basques and finally arrived in St.John’s. There, they joined a small group of British aviators who had arrived a few days before and who were also preparing for the competition. « The evenings were mostly spent in playing cards with the other competitors at the Cochrane Hotel, or in visits to the neighbouring film theatres. St.John’s itself showed us every kindness. » (p.60)

Maritime transport was used to carry the Vickers-Vimy biplane to Newfoundland on May 4th. It was assembled in Newfoundland. « The reporters representing the Daily Mail, the New York Times, and the New York World were often of assistance when extra manpower was required. » (p.61).

While the aircraft was being built, there were more and more visiters coming to the site. Brown says : « Although we remained unworried so long as the crowd contented itself with just watching, we had to guard against petty damage. The testing of the fabric’s firmness with the point of an umbrella was a favourite pastime of the spectators […]. » (p.61)

The Vickers-Vimy is being reassembled at Quidi Vidi in Newfoundland.
The Vickers-Vimy is being reassembled at Quidi Vidi in Newfoundland.

It was difficult to find a field that could be improvised into an aerodrome : « Newfoundland is a hospitable place, but its best friends cannot claim that it is ideal for aviation. The whole of the island has no ground that might be made into a first-class aerodrome. The district around St.John’s is  especially difficult. Some of the country is wooded, but for the most part it shows a rolling, switchback surface, across which aeroplanes cannot taxi with any degree of smoothness. The soil is soft and dotted with boulders, as only a light layer covers the rock stratum. Another handicap is the prevalence of thick fogs, which roll westward from the sea. » (p.59)

They flight tested the airplane on June 9th at Quidi Vidi. During the short flight, the crew could see icebergs near the coast. They did a second trial on June 12th and found that the transmitter constantly caused problems. But, at least, the engines seemed to be reliable…

The departure

The two men left Newfoundland on June 14th 1919. In order to fight the cold air in flight, they wore electrically heated clothing. A battery located between two seats provided for the necessary energy.

The Vickers-Vimy departs from Newfoundland in 1919
The Vickers-Vimy departs from Newfoundland in 1919

The short take-off was very difficult due to the wind and the rough surface of the aerodrome. Brown writes : « Several times I held my breath, from fear that our under-carriage would hit a roof or a tree-top. I am convinced that only Alcock’s clever piloting saved us from such an early disaster. » (p.73)

It took them 8 minutes to reach 1000 ft. Barely one hour after departure and once over the ocean, the generator broke and the flight crew was cut off from all means of communication.

As the airplane consumed petrol, the centre of gravity changed and since there was no trim on the machine, the pilot had to exert a permanent backward pressure on the joystick.

Flying in clouds, fog and turbulence.

During the flight with much clouds and fog, Brown, having almost no navigation aid,  had real problems to estimate the aircraft’s position and limit the flying errors. He had to wait for a higher altitude and for the night to come to improve his calculations : « I waited impatiently for the first sight of the moon, the Pole Star and other old friends of every navigator. » (p.84). The fog and clouds were so thick that at times they « cut off from view parts of the Vickers-Vimy. » (p.95)

Without proper instruments to fly in clouds, they were relying on a « revolution-counter » to establish the climbing or the falling rate. That is pretty scary. « A sudden increase in revolutions would indicate that the plane was diving; a sudden loss of revs  would show that she was climbing dangerously steeply. » (p.176)

But that was not enough. They also had to deal with turbulence that rocked the plane while they could not see anything outside. They became desoriented : « The airspeed indicator failed to register, and bad bumps prevented me from holding to our course. From side to side rocked the machine, and it was hard to know in what position we really were. A spin was the inevitable result. From an altitude of 4,000 feet we twirled rapidly downward.[…]. « Apart from the changing levels marked by aneroid, only the fact that our bodies were pressed tightly against the seats indicated that we were falling. How and at what angle we were falling, we knew not. Alcock tried to centralise the controls, but failed because we had lost all sense of what was central. I searched in every direction for an external sign, and saw nothing but opaque nebulousness. » (p.88)

« It was a tense moment for us, and when at last we emerged from the fog we were close down over the water at an extremely dangerous angle. The white-capped waves were rolling along too close to be comfortable, but a quick glimpse of the horizon enabled me to regain control of the machine. » (p.40).

De-icing a gauge installed outside of the cockpit.

Snow and sleet were falling. They didn’t realize how lucky they were to continue flying in such a weather. Nowadays, there are many ways to dislodge ice from a wing while the aircraft is in flight. Here is what Brown says about their situation : « […] The top sides of the plane were covered completely by a crusting of frozen sleet. The sleet imbedded itself in the hinges of the ailerons and jammed them, so that for about an hour the machine had scarcely any lateral control. Fortunately, the Vickers-Vimy possesses plenty of inherent lateral stability; and, as the rudder controls were never clogged by sleet, we were able to hold to the right direction. » (p.95)

After twelve hours of flying, the glass of a gauge outside the cockpit became obscured by clotted snow. Brown had to deal with it, while Alcock was flying. «  The only way to reach it was by climbing out of the cockpit and kneeling on top of the fuselage, while holding a strut for the maintenance of balance. […] The violent rush of air, which tended to push me backward, was another discomfort. […] Until the storm ended, a repetition of this performance, at fairly frequent intervals, continued to be necessary. » (p.94)

In order to save themselves, they executed a descent from 11,000 to 1000 feet and in the warmer air the ailerons started to operate again. As they continued their descent below 1000 feet over the ocean, they were still surrounded by fog. They had to do some serious low altitude flying : « Alcock was feeling his way downward gently and alertly, not knowing whether the cloud extended to the ocean, nor at what moment the machine’s undercarriage might touch the waves. He had loosened his safety belt, and was ready to abandon ship if we hit the water […]. » (p.96)

The arrival.

They saw Ireland at 8.15 am on June 15th and crossed the coast ten minutes later. They did not expect a very challenging landing as the field looked solid enough to support an aircraft. They landed at 8 :40 am at Clifden on top of what happened to be a bog; the aircraft rolled on its nose and suffered serious material damages. The first non-stop transatlantic flight ended in a crash. Both both crewmen were alive and well, although they were dealing with fatigue…

The transatlantic flight ends up in Ireland in a soft field
The transatlantic flight ends up in Ireland in a soft field

Initially, nobody in Ireland believed that the plane arrived from North America. But when they saw mail-bags from Newfoundland, there were « cheers and painful hand-shakes » (p.102).

First page of the Sunday Evening Telegraph in 1919.
First page of the Sunday Evening Telegraph in 1919.

They were cheered by the crowds in Ireland and England and received their prize from Winston Churchill.

John Alcock chaired by the crowd
John Alcock chaired by the crowd
Winston Churchill is presenting the Daily Mail Check to the two pilots.
Winston Churchill is presenting the Daily Mail Check to the two pilots.

Their record stood unchallenged for eight years until Lindbergh’s flight in 1927.

The future of transatlantic flight.

Towards the end of the book, the authors risk a prediction on the future of transatlantic flight. But aviation made such a progress in a very short time that, inevitably, their thoughts on the subject was obsolete in a matter of a few years. Here are some examples :

« Nothwithstanding that the first two flights across the Atlantic were made respectively by a flying boat and an aeroplane, it is evident that the future of transatlantic flight belongs to the airship. » (p.121)

« […] The heavy type of aeroplane necessary to carry an economical load for long distances would not be capable of much more than 85 to 90 miles an hour. The difference between this and the present airship speed of 60 miles an hour would be reduced by the fact that an aeroplane must land at intermediate stations for fuel replenishment. » (p.123)

« It is undesirable to fly at great heights owing to the low temperature; but with suitable provision for heating there is no reason why flying at 10,000 feet should not be common. » (p.136)

The Air Age.

There is a short section in the book on the « Air Age ». I chose two small excerpts on Germany and Canada :

On Germany’s excellent Zeppelins : « The new type of Zeppelin – the Bodensee –  is so efficient that no weather conditions, except a strong cross-hangar wind, prevents it from making its daily flight of 390 miles between Friedrichshafen and Staalsen, thirteen miles from Berlin. » (p.140)

On Canada’s use of aeroplanes : « Canada has found a highly successful use for aeroplanes in prospecting the Labrador timber country. A group of machines returned from an exploration with valuable photographs and maps of hundreds of thousands of pound’s worth of forest land. Aerial fire patrols, also, are sent out over forests.» (p.142) and « Already, the Canadian Northwest Mounted Police [today the RCMP] have captured criminals by means of aeroplane patrols. » (p.146)

Conclusion

The Manchester Guardian stated, on June 16th 1919 : « […] As far as can be foreseen, the future of air transport over the Atlantic is not for the aeroplane. It may be used many times for personal feats of daring. But to make the aeroplane safe enough for business use on such sea routes we should have to have all the cyclones of the Atlantic marked on the chart, and their progress marked in from hour to hour. »(p.169)

Title : Our Transatlantic Flight

Authors : Sir John Alcock and Sir Arthur Whitten Brown

Edition : William Kimber

© 1969

SBN : 7183-0221-4

For other articles on that theme on my website: Aviation pioneers.

Categories
Flight Simulation

The regional jet CRJ-900ER and CRJ-700ER by Digital Aviation and Aerosoft

The reason for the delays and the positive side for the consumers

A virtual Bombardier regional jet CRJ-900ER (Aerosoft) with the Alaska Airlines colors is climbing after its departure from the Valdez virtual airport in Alaska (ORBX).
A virtual Bombardier regional jet CRJ-900ER (Aerosoft) with the Alaska Airlines colors is climbing after its departure from the Valdez virtual airport in Alaska (ORBX).

Digital Aviation & Aerosoft have finally completed their long awaited project to make a virtual CRJ-900ER and CRJ-700ER Bombardier regional jets. Months later than expected, the flight simulation enthusiasts can now try those two new virtual aircrafts. The CRJ is mostly used to link smaller airports and remote areas to the main hubs. The aircraft can rapidly reach its cruising altitude and stay there a long time, but it is not intended to be a really fast aircraft.

The company explains that, since the beginning, it had underestimated the complexity of the project and, because of ongoing delays, ended up having to catch up with the competition. In order to offer a superior product than the competition, Digital Aviation and Aerosoft had to review what it initially considered as an almost completed project.

Virtual CRJ-700ER aircraft (Aerosoft) with the Alaska Airlines colors airborne from the Valdez virtual airport (ORBX)
Virtual CRJ-700ER aircraft (Aerosoft) with the Alaska Airlines colors airborne from the Valdez virtual airport (ORBX)

The CRJ-900ER and CRJ-700ER had their exterior almost completely redone; the consumer now ends up with a much better looking aircraft. The project manager says that it is only due to the patience and kindness of potential customers that the project was saved. It pays to be nice!

The first flight with the CRJ

Virtual CRJ-900ER aircraft with the Air Nostrum colors departing the St. Maarten international airport (Fly Tampa St.Maarten)
Virtual CRJ-900ER aircraft with the Air Nostrum colors departing the St. Maarten international airport (Fly Tampa St.Maarten)

For the first flight, the manual recommends to first choose and activate one of the default FSX aircraft with the engine running. The pilot then selects the CRJ of his choice. It seems that doing so will prevent a lot of problems.

The virtual 2D cockpit

The virtual 2D cockpit helps save a few FPS. An easy access to the different sections of the cockpit is available since it is divided in several logical panels numbered from 1 to 9.

Navigation

The virtual pilot has access to an updated NavDataPro (May 2017) database for air navigation. It is the world’s most used database in aircraft. The aircraft is also compatible with the popular Navigraph database.

How does a standard computer deals with the new CRJ?

Virtual CRJ-900ER aircraft (Aerosoft) with the U.S. Airways colors airborne from the Denver International airport (Flightbeam Studios)
Virtual CRJ-900ER aircraft (Aerosoft) with the U.S. Airways colors airborne from the Denver International airport (Flightbeam Studios)

I have flown both aircrafts on several virtual airports like St. Maarten (Fly Tampa St. Maarten), Montreal international (Fly Tampa Montreal), Denver international (Flightbeam Studios) and Valdez (ORBX) without problems with regards to the computer’s processors and FPS. It was certainly out of question to try to land at the Courchevel airport (LLH Creations), with its short sloped runway, but a low pass at high speed caused no stutters.

A virtual CRJ-700ER aircraft (Aerosoft) with the Air France HOP colors is in flight over the Courchevel virtual airport in France (LLH Creations)
A virtual CRJ-700ER aircraft (Aerosoft) with the Air France HOP colors is in flight over the Courchevel virtual airport in France (LLH Creations)

Flying the CRJ at low speed

The CRJ offers a good margin of manoeuver when it comes to flying at low speed. But due to the position of the engines, the aircraft’s nose will raise rapidly when the throttle is brought back to idle. In a constant and progressive descent, that does not cause a problem. But if the manoeuver is done on short final when the aircraft is still above 50 feet, the rapid change in the aircraft’s attitude could induce a stall.

The air brakes

One cannot rely too much on the air brakes to slow down the CRJ. They have limited efficiency, both for the virtual and the real aircraft.

Floating tendency

If the aircraft arrives over the threshold at a higher speed than recommended, it will float for a long distance before finally touching down.

Landing and take-off distances

A virtual CRJ-900ER aircraft with the Air Canada colours (Aerosoft) is approaching the Montreal Pierre-Elliott-Trudeau virtual airport (Fly Tampa Montreal)
A virtual CRJ-900ER aircraft with the Air Canada colours (Aerosoft) is approaching the Montreal Pierre-Elliott-Trudeau virtual airport (Fly Tampa Montreal)

The CRJ-900 and CRJ-700 operate on relatively short runways. The CRJ-700 needs 5040 feet for take-off (at maximum weight) and landing, under the standard ICAO conditions. The CRJ-900 requires 6060 feet for take-off and 5260 feet for landing. The maximum range has been established to be around 1300 and 1400 nm.

Managers that facilitate the use of the CRJ

For the CRJ, Digital Aviation & Aerosoft have created managers that allow choosing the number of passengers, cargo, as well as calculating the fuel weight, the center of gravity and the amount of trim required. There is even a FS2 Crew option if desired. Another manager facilitated the addition of liveries.

The flight simulation enthusiasts had been anticipating the arrival of that regional jet for a long time; some did not believe anymore that it would one day become a reality (that includes the company too!). The flight simmers now have access to a world class and high quality regional jet.

For more articles on flight simulation on my web site, click on the following link : Flight simulation

Categories
Flight Simulation

Flight simulation: a FedEx MD-11 inbound for the Telluride airport (KTEX) (FSX)

The flight simulator enthousiast will have fun trying this short flight ( 14 minutes) from the Eagle County virtual airport (KEGE) to the Telluride virtual airport (KTEX). The virtual flight, using FSX, was made during winter, on January 8th. The shots below represent an idea of what is visible while flying toTelluride. Use 14,000 feet, it should do it…

FedEx MD-11 on the take-off run at the Eagle County airport (KEGE) (FSX)
FedEx MD-11 on the take-off run at the Eagle County airport (KEGE) (FSX)
FedEx MD-11 airborne from the Eagle County airport (KEGE) (FSX)
FedEx MD-11 airborne from the Eagle County airport (KEGE) (FSX)
FedEx MD-11 between Eagle County airport (KEGE) and Telluride airport (KTEX) (FSX)
FedEx MD-11 between Eagle County airport (KEGE) and Telluride airport (KTEX) (FSX)

There are lots of beautiful mountains between KEGE and Telluride, and also some unpredictable weather…

FedEX Md-11 entering bad weather
FedEX Md-11 entering bad weather

The expected ceiling at Telluride was 8500 ft. On the way to the airport, the clouds and visibility were sometimes obscuring the mountains.

A FedEx MD-11 on a flight Eagle County (KEGE) to Telluride (KTEX) (FSX)
A FedEx MD-11 on a flight Eagle County (KEGE) to Telluride (KTEX) (FSX)

Telluride is a very inviting airport for a MD-11. The 7000 feet runway itself does not represent a big challenge, although its 100 feet are a bit narrow: this aircraft would normally require a 150 feet wide landing surface.

The virtual VFR approach made with the MD-11 was the most expensive way to do the trip, since it required a fly-by and a 270 degree turn to the right to align with runway 09.

FedEx MD-11 flies by the Telluride airport KTEX) (FSX)
FedEx MD-11 flies by the Telluride airport KTEX) (FSX)

The 270 degree turn at a 10-20 degree bank allowed to transit from 14,000 to 10,000 ft without doing anything radical. Just a turn while descending and gradually loosing speed to arrive at around 160 kts on final. The aircraft was now installed on long final, with flaps set at 50 degrees.

A FedEx MD-11 on long final runway 09 for the Telluride airport (KTEX) (FSX)
A FedEx MD-11 on long final runway 09 for the Telluride airport (KTEX) (FSX)

The high altitude runway’s 9078 feet msl elevation meant the pilots dealt with lower air density and heavy weight when approaching and, as such, the airspeed had to be adjusted accordingly to prevent stalling on final.

A FedEx MD-11 on final runway 09 for the Telluride airport (KTEX) (FSX)
A FedEx MD-11 on final runway 09 for the Telluride airport (KTEX) (FSX)

Here is a view from the Telluride tower…

View from the Telluride airport (KTEX) (FSX) of a FedEx MD-11 on final for runway 09
View from the Telluride airport (KTEX) (FSX) of a FedEx MD-11 on final for runway 09

Now with a view like that, you would not consider coming in IFR…!

A FedEx MD-11 inbound from KEGE on final for runway 09 at the Telluride airport (KTEX) (FSX)
A FedEx MD-11 inbound from KEGE on final for runway 09 at the Telluride airport (KTEX) (FSX)

To prevent an overshoot and some additional expenses in fuel (which are already skyrocketing), an optimal approach was required.

Most accidents with the MD-11 happen when the pilot pushes on the stick when there is a rebound with the nose wheel, thus creating an even stronger rebound. When there is a rebound, there is no need to push on the stick, just wait and the aircraft sets itself quickly.

A FedEx MD-11 over the threshold runway 09 at the Telluride airport (KTEX) (FSX)
A FedEx MD-11 over the threshold runway 09 at the Telluride airport (KTEX) (FSX)

Now with max breaking and thrust reversers…

A FedEX MD-11 slowing down at the Telluride airport (KTEX) (FSX)
A FedEX MD-11 slowing down at the Telluride airport (KTEX) (FSX)

The MD-11 can easily turn at the first taxiway at Telluride. But in order to capture a wider view of the airport, I exited at the last taxiway (again adding to the already enormous expense in fuel…)

A FedEX Md-11 is exiting runway 09 at the Telluride airport (KTEX) (FSX)
A FedEX Md-11 is exiting runway 09 at the Telluride airport (KTEX) (FSX)

The employee on the ramp was worried that the MD-11 lower winglet would scratch N900SS while taxiing. But there was plenty of space (11 inches)…

A FedEX Md-11 is taxiing on the ramp at the Telluride airport (KTEX) (FSX)
A FedEX Md-11 is taxiing on the ramp at the Telluride airport (KTEX) (FSX)

The MD-11 was parked temporarily in a spot needed by every aircraft. It was necessary to unload quickly the precious cargo and get out of the way.

Temporary parking for a FedEx MD-11 at the Telluride airport (KTEX) (FSX)
Temporary parking for a FedEx MD-11 at the Telluride airport (KTEX) (FSX)

Some expert handling would be needed to help move back that MD-11 close to the runway. But that was the Telluride’s airport manager problem and he had promised he would have something ready!

FedEx Md-11 parked at the Telluride airport (KTEX) (FSX)
FedEx Md-11 parked at the Telluride airport (KTEX) (FSX)

The virtual scenery from departure to destination is a creation of ORBX programmers and the virtual MD-11 is made by PMDG Simulations (I am not sure it works with P3D though). For the weather, I used REX Simulations as the weather engine and REX and Cumulus X for the cloud textures. (Edit: PMDG does not support it’s MD-11 anymore).

For other challenging virtual flights, head towards the flight simulation section of my web site, under “challenging virtual flights”: there is something for everyone!

For more articles on flight simulation on my web site, click on the following link : Flight simulation

Categories
Aviation photography

Aviation photography: a Twin Otter floatplane lands in Vancouver Harbour

Westcoast Air Twin Otter floatplane C-FGQH arriving in Vancouver Harbour, in British-Columbia, during Summer 2016. The photo was taken with a Canon 5DSR camera.
Westcoast Air Twin Otter floatplane C-FGQH arriving in Vancouver Harbour, in British-Columbia, during Summer 2016. The photo was taken with a Canon 5DSR camera.

The picture above was taken in British Columbia, during summer 2016, with a Canon 5DSR full-frame camera equipped with a Canon 70-200 f2.8L IS II USM telephoto lens.

A Westcoast Air (C-FGQH) Twin Otter floatplane (DHC-6) was about to land in the Vancouver Harbour. It is obvious that adjusting the shutter speed to 1/1200 would have given enough speed to obtain a clear image. But this would have taken away any movement sensation by freezing the propellers and background.

The shutter speed had to be slow enough to allow the rotation of propellers. It is clear that an aircraft’s propeller rotates more slowly on final for landing than during take-off. So the camera had to be adjusted for a shutter speed varying between 1/40 and 1/125.

A slower shutter speed increases the risk of getting a blurred photo, especially when the photograph must move with the camera to obtain the desired effect of movement. The fact that a telephoto lens is used also increases the possibility of a blurred picture. It is thus imperative to activate the stabilizer and horizontal panning function of the telephoto lens.

To obtain a background without any precise details, the camera is panning and follows exactly the aircraft’s movement. This requires a progressive acceleration of the panning, according to the aircraft’s position from the photographer.

When the Twin Otter gets closer, things get a bit more complicated as everything speeds up. It is necessary to already have positioned the feet in the appropriate direction in order to avoid a major switch in the body’s posture. The slightest useless or brisk movement would immediately be visible on the photo.

With a bit of practice, a photographer will achieve success by respecting the following elements: a shutter speed between 1/40 and 1/125, an appropriate position of the feet, no brisk movement while pivoting and a progressive acceleration of the body’s rotation aligned with the aircraft’s speed. A slower shutter speed will enhance the aircraft movement. But expect more blurred pictures when working with speeds between 1/40 and 1/60.

A last detail: as soon as the aircraft’s floats touch the water, the deceleration starts. The photographer’s pivoting speed must immediately slow down otherwise the photo will be blurred.

Click on the link for other aviation photos on my blog.

Categories
Aviation photography

Aviation photography: plane spotting at the Toronto Lester B. Pearson international airport (CYYZ)

Air Canada Airbus A330-343 C-GHLM in Toronto 2016
Air Canada Airbus A330-343 C-GHLM in Toronto 2016

Here is some information aimed at helping tourists visiting Toronto, who like photography and aviation, and would think of booking one day during their visit to head to the Toronto Lester B. Pearson international airport (CYYZ) for a plane spotting photo session.

Initial planning

If you can, get a scanner or download an app on your cell phone to get real time information on air traffic around the airport: you will then know in advance the type and nationality of inbound or departing aircrafts.

Search for websites giving you access to Toronto airport VHF frequencies and program your scanner if you decided to get one.

Have a look at different plane spotting websites for the Toronto airport: there are many precious advices from experienced plane spotters that will prove useful in heading to the best spots and avoiding common mistakes.

Print two or three maps of secondary routes around the airport so that you can orient yourself when there is a change in runway use due to different winds or if you use a taxi ride to move around the airport: the driver will always ask you details on how to get there since those secondary routes are not a common destination for him (and chances are that he will not know where to go if you ask him to head to threshold of runway 05. Basically, he needs road names, not runway numbers).

Cessna 560XL S5-BAV Toronto 2016
Cessna 560XL S5-BAV Toronto 2016
British Airways Boeing 777-236 G-ZZZA in Toronto 2016
British Airways Boeing 777-236 G-ZZZA in Toronto 2016

Before leaving your Toronto hotel

Before you leave the hotel, look at the Toronto weather forecast, among them the TAF, to know the wind pattern for the day. The Nav Canada site has everything you need to know and there is a possibility to choose between coded or plain aviation language.

The Environment Canada site is also very useful.

Don’t forget to bring many snacks as well as a bottle of water since you will possibly be at a good distance from a restaurant for many hours, depending on which runway is in use. The same goes for additional batteries and memory cards for the camera.

Don’t forget the scanner, the cell phone (to call a taxi driver or get access to the arrivals and departures information) and all the photo equipment needed, as well as an abnormally high number of clothing layers necessary in case of winter photography: eight hours almost immobile outside in February calls for an appropriate preparation if you want to appreciate your experience. If you economize on clothing, it is certain that you will have to shorten your photography session.

I chose February for its very interesting light and not for its temperature! Most of the shots in this article were taken in only one day at the Toronto airport, between 10h30am and 18h30.

American Airlines MD-82 N482AA final 05 Toronto 2016
American Airlines MD-82 N482AA final 05 Toronto 2016

From the hotel to the airport

If you chose to stay at a downtown hotel in Toronto, the best way to get to the Toronto international airport is to use the UP Express train, from the Union Station on Front Street. Its use is very simple and departures are made every fifteen minutes. In February 2016, the cost was CDN $44.00 for a return trip to the airport, while a taxi ride cost $130.00.

UP Express Toronto 2016
UP Express Toronto 2016

The UP Express ride only takes 25 minutes and the train stops at Terminal 1.

It is preferable to avoid using your car around the Toronto international airport since some secondary roads are private and no stopping is allowed. You will take more time to look for police than to enjoy your plane spotting photography session.

Once you are at Terminal 1

Once you exit the UP Express at Terminal 1, get your scanner and monitor the ATIS frequency (120.825) to get the latest information on the runways in use for take offs and landings. For my photo session, the ATIS announced that runway 05 and 06L were in use, both for arrivals and departures. I took a taxi, showed the map with secondary roads to the driver and within few minutes I was where I needed to be and started the photo session.

Air Transat Airbus A-330 C-GTSN Toronto 2016
Air Transat Airbus A-330 C-GTSN Toronto 2016

A preliminary internet search allowed to discover that heavies mostly arrive from Europe during the afternoon et that runway 05/23 is favored for Emirates Airline Airbus A-380 arrival. I thus decided to position myself near runway 05 instead of 06L.

There are two or three quite isolated spots around the airport that provide interesting point of views for aircraft photos but that can present security problems for a photographer working alone with expensive equipment. Experienced plane spotters suggest that you should be accompanied by friends if you decide to opt for those spots (see the “plane spotting” internet sites suggested at the beginning of this article).

Emirates A-380 final for Toronto (CYYZ)
Emirates A-380 final for Toronto (CYYZ)
Emirates A-380 on final for Toronto (CYYZ) 2016
Emirates A-380 on final for Toronto (CYYZ) 2016
Emirates A-380 on final 05 for Toronto (CYYZ) 2016
Emirates A-380 on final 05 for Toronto (CYYZ) 2016

Technical advices

For precise photos of aircrafts in movement, I use the following parameters with my Canon 5D MKII camera:

1. Only the central AF Point of the auto focus system is selected and not the surrounding ones in order to avoid that the camera sets the focus on other objects than what I desire (trees, ILS structure, buildings).

2. The AI Servo setting is more efficient than the AI Focus or One Shot. The aircraft will be followed precisely.

3. If I want to include surrounding objects in the photo, I adjust the aperture to 7.1 or 8, instead of 11 or 13. I thus avoid increasing the ISO too much, which would affect the picture’s quality if it has to be enlarged with Photoshop.

Westjet Boeing 737-8CT C-GWSV Disneyland Livery in Toronto 2016
Westjet Boeing 737-8CT C-GWSV Disneyland Livery in Toronto 2016

4. To take pictures of an approaching propeller powered aircraft, a speed adjusted to 1/125 is generally adequate. You must pivot according to the aircraft movement so that it looks like it is immobile in your viewfinder. The picture is easier to take when the aircraft is farther away but becomes more of a challenge when it gets closer and flies by you since you must constantly change your pivoting speed.

Porter Q-400 C-GLQD on final for Toronto Billy Bishop airport (CYTZ) 2016
Porter Q-400 C-GLQD on final for Toronto Billy Bishop airport (CYTZ) 2016
Air Canada DHC-8-102 C-FGQK Toronto 2016
Air Canada DHC-8-102 C-FGQK Toronto 2016

5. A shutter speed that is too high will immobilize the propeller of an aircraft and make it look like the engine is not working, which will take away realism.

6. Throughout the day, position yourself so as to have the sun behind you (if there is any sun!), unless you are looking for special effects.

Global 5000 GL5T C-GJET in Toronto 2016
Global 5000 GL5T C-GJET in Toronto 2016

7. A very high quality lens, like the Canon 50mm 1.4, allows for beautiful pictures during the evening since there is no compromise on ISO, as the lens does not need much light. The grain size stays relatively small.

Air Canada Boeing 777 final 05 Toronto 2016
Air Canada Boeing 777 final 05 Toronto 2016

8. I use a very low ISO if the photo includes an interesting but far away aircraft, in order to be able to crop the picture with Photoshop. Since I cannot compromise on the speed to avoid a blurred picture, it becomes obvious that it is the aperture that pays the price.

Air Canada Airbus A-330 final 06L Toronto 2016
Air Canada Airbus A-330 final 06L Toronto 2016

9. If the situation allows it, add visual references other than clouds to get a bit more variety in your aircraft photo collection.

Air Canada Boeing 777 final runway 05 Toronto 2016
Air Canada Boeing 777 final runway 05 Toronto 2016

10. Try a black and white photo if the cloud formation is particularly interesting.

C-GQBG CL-415 and cirrus clouds on a black and white picture
C-GQBG CL-415 and cirrus clouds on a black and white picture

11. RAW+JPEG files allow for important adjustments when necessary. A JPEG only photo gives you little leeway when you want to correct mistakes or during problematic lighting conditions.

12. Variable sky conditions and constant direction winds are preferable for your photo session since the runway in use will not be changed in the afternoon and your pictures will benefit from different light intensity and cloud formations.

13. If you want to take the aircraft in relation to the ILS poles and you are looking for a symmetrical photo, just move few inches to the right or left while the aircraft is approaching or going away from you. You will also want to avoid that the horizontal poles of the ILS cut the plane and make it difficult to see.

Westjet Boeing 737-800 final 05 Toronto 2016
Westjet Boeing 737-800 final 05 Toronto 2016

14. Have fun experimenting, like taking a shot just above your head while including other objects for added interest.

On the ILS 05 for Toronto 2016
On the ILS 05 for Toronto 2016

15. Instead of always showing the whole aircraft, try a close-up view.

Air Canada Boeing 787-9 C-FNOI in Toronto 2016
Air Canada Boeing 787-9 C-FNOI in Toronto 2016

16. The close-up view might be such that even passengers of an aircraft on final will look at you while you immortalize them.

United Express on final at the Quebec Jean-Lesage international airport.
United Express on final at the Quebec Jean-Lesage international airport.

17. Chances are that you will meet other enthusiast plane spotters in the same area as yours since they also prepared themselves for a successful photo session.

Westjet Boeing 737-800 C-FYPB in Toronto 2016
Westjet Boeing 737-800 C-FYPB in Toronto 2016

18. Since you are in Toronto, head to Toronto Harbour when you are back downtown. You will witness the air traffic surrounding the Toronto Billy Bishop airport (CYTZ), formerly known as Toronto Island, and possibly take some original shots.

Porter Q-400 C-GLQM and C-GLQB at Toronto CYTZ 2016
Porter Q-400 C-GLQM and C-GLQB at Toronto CYTZ 2016

19. This is the photo equipment used for my Toronto airport plane spotting session: Canon 5D MKII camera and the following Canon lenses: EF 50mm f/1.4 USM, EF 16-35mm f/2.8L II USM, EF 24-70mm f/2.8L USM, EF 70-200mm f/2.8L IS II USM. No polarizer was used that day since I wanted to increase my margin of manoeuver with fast moving aircrafts under the February low intensity light.

Air Canada Rouge Boeing 767-300ER final 05 at Toronto 2016
Air Canada Rouge Boeing 767-300ER final 05 at Toronto 2016
American Eagle CRJ-701ER N523AE Toronto 2016
American Eagle CRJ-701ER N523AE Toronto 2016

Aviation photography requires much planning for successful photos. But all your efforts will rapidly bear fruits once you are on site and you will not see time pass! Have a great plane spotting session and give me some news of your experience if you can!

Air Canada Boeing 767-375 (ER) C-FCAB in Toronto 2016
Air Canada Boeing 767-375 (ER) C-FCAB in Toronto 2016

You can have access to other aircraft photos taken at Toronto through this link on my site:
photo galleries/aviation only

For other articles on aviation and photography, click on the following link: Aviation photography

Categories
Real life stories as a flight service specialist (FSS): Quebec FSS

Quebec FSS and the September 11th 2001 events

One of four F-18s over the National War Memorial in Ottawa on October 22nd 2015
One of four F-18s over the National War Memorial in Ottawa on October 22nd 2015

During the September 11th 2001 crisis, the Canadian sky belonged, for a short period, to the military. The latter had taken the decision that every aircraft that had not taken-off yet had to stay on the ground, and those which were airborne had to expedite the landing.

There were a few exceptions for medical evacuations, but those flights were tightly monitored. All air traffic services units communicated with aircrafts in flight and agencies on the ground to advise them of the new rules now in place.

Generally speaking, regardless of the initial surprise, all pilots with whom the Transport Canada flight service specialists (FSS) in Quebec City had talked, through their multiple frequencies, offered no resistance.

But I remember the case of a pilot flying a twin-engine aircraft over the Laurentides region to whom the order of landing as soon as possible had been given. He refused to obey since it was out of the question for him to lose money on already booked charter flights, especially on a beautiful day.

The flight service specialists could understand his frustration. Nonetheless, it was not a good time to debate. It was, for all air traffic services units involved, a particularly busy day and nobody had extra time to argue at length about a request.

The message was repeated one more time. In view of his refusal to obey, NORAD (North American Aerospace Defense Command) was contacted. The reply came back quickly and the pilot was given two choices: either he landed or an CF-18 fighter jet would be launched to take care of the situation.

No need to add anything else. The pilot complied immediately.

For more real life stories about being a FSS in Quebec City, click on the following link: Flight service specialist (FSS) in Quebec City