Archives de l’étiquette : Twin Otter

Limberlost Ranch (CA21) et le Twin Otter C-FOPG

Le vol virtuel ci-dessous a été effectué avec la plateforme FSX. La dernière fois que j’ai atterri et décollé de Limberlost Ranch, c’était avec un Cessna C-207 ( Limberlost Ranch et le Cessna C-207 ).

Cette fois, j’ai essayé  cette  piste latéralement inégale et en pente avec un Twin Otter. Ce dernier est aux couleurs réelles du Ministère des ressources naturelles de l’Ontario (C-FOPG). Le seul problème qui pouvait se poser était la largeur des ailes une fois rendu près du hangar.

En finale pour la piste en pente de Limberlost Ranch
En finale pour la piste en pente de Limberlost Ranch
Approche du Twin Otter C-FOPG pour la courte piste de Limberlost Ranch
Approche du Twin Otter C-FOPG pour la courte piste de Limberlost Ranch

Finalement, tout s’est bien passé. La seule vraie difficulté est de manœuvrer près du hangar pour repositionner le Twin Otter pour le décollage. En modifiant continuellement le pas de l’hélice, cela finit par fonctionner.

Arrivée à Limberlost Ranch du Twin Otter C-FOPG
Arrivée à Limberlost Ranch du Twin Otter C-FOPG
Avion virtuel du gouvernement de l'Ontario faisant demi-tour sur la piste de Limberlost Ranch.
Avion virtuel du gouvernement de l’Ontario faisant demi-tour sur la piste de Limberlost Ranch.

La clôture n’étant pas trop haute, elle ne présente pas de problème pour les ailes de l’aéronef.

Aéronef virtuel C-FOPG roule sur la piste de Limberlost Ranch (CA21)
Aéronef virtuel C-FOPG roule sur la piste de Limberlost Ranch (CA21)

Au bout de la courte piste en gazon, quelques grands arbres obligent à effectuer un léger virage alors que l’avion est en montée. Juste au cas où …

Avion Twin Otter quittant Limberlost Ranch (CA21)
Avion Twin Otter quittant Limberlost Ranch (CA21)

Limberlost Ranch est un défi amusant. L’aérodrome est vendu par Orbx et vient avec l’aéroport Blue-Canyon Nyack ( https://orbxdirect.com/product/kblu ).

Si cela n’est pas suffisant pour l’amateur de simulation de vol, il n’y a qu’à rajouter de bons vents directement de travers et le tour sera joué!

Du Chili vers Rothera, Antarctique, avec le Twin Otter de la société BAS et le simulateur de vol FSX

Vue aérienne de la station de recherche de Rothera en Antarctique.
Vue aérienne de la station de recherche de Rothera en Antarctique.

Pour ce vol, vous avez obligatoirement besoin du logiciel de simulation de vol Antarctica X créé par Aerosoft.

Les Twin Otters et le Dash-7 de la société BAS sont entretenus à Calgary, au Canada, et volent vers l’Antarctique durant l’été austral, entre Octobre et Mars. Donc si vous souhaitez simuler un vol avec un Twin Otter ou un Dash-7 entre le Chili et l’Antarctique, choisissez un de ces mois pour plus de réalisme.

Étant donné qu’il serait un peu long de faire tous les vols virtuels normalement effectués du Canada vers l’Antarctique, j’ai plutôt choisi d’effectuer les trois derniers vols, pour voir de quoi le paysage a l’air.

Le Twin Otter est normalement approuvé pour un décollage avec poids maximal de 12,500 livres. Mais avec des skis pesant 800 livres et du carburant supplémentaire requis pour des trajets anormalement longs, la société BAS (British Antarctic Survey) s’est organisée pour faire certifier leurs Twin Otters à un poids maximal de 14,000 livres. Même à ce poids, l’avion peut toujours continuer à voler sur un moteur.

Le premier vol consiste en un trajet entre l’aéroport de La Florida (SCSE) au Chili et l’aéroport de El Tepual de Puerto Montt (SCTE) également au Chili. La Florida est une escale obligée pour ravitaillement en carburant.

Décollage de La Florida, Chili, après un plein d'essence.
Décollage de La Florida, Chili, après un plein d’essence.

Ce vol avec le Twin Otter dure environ 4 :25 heures (696 nm) avec un cap de 185 degrés.

En vol vers El Tepual de Puerto Montt, Chili.
En vol vers El Tepual de Puerto Montt, Chili.

Pour améliorer le paysage, je me suis servi des logiciels FTX Global, FTX Vector et Pilot’s FS Global 2010. Orbx a également retravaillé l’aéroport de El Tepual de Puerto Montt pour inclure quelques personnes, des avions et de nouveaux bâtiments. Cela rend la destination plus intéressante.

Twin Otter en finale pour El Tepual de Puerto Montt, Chili.
Twin Otter en finale pour El Tepual de Puerto Montt, Chili.
Prêt pour le ravitaillement à l'aéroport de El Tepual de Puerto Montt, Chili
Prêt pour le ravitaillement à l’aéroport de El Tepual de Puerto Montt, Chili

Le prochain vol se fait entre l’aéroport de El Tepual de Puerto Montt (SCTE) et celui de Punta Arenas (SCCI), les deux au Chili.

Avion Twin Otter au décollage vers Punta Arenas, Chili.
Avion Twin Otter au décollage vers Punta Arenas, Chili.

Ce vol, effectué à travers les Andes, demande absolument une belle météo. Vous devrez monter jusqu’à 17,000 pieds pour faire un trajet direct entre les deux aéroports.

Twin Otter au-dessus des Andes en montée pour 17,000 pieds
Twin Otter au-dessus des Andes en montée pour 17,000 pieds

Des vues spectaculaires s’offrent souvent au pilote virtuel durant le trajet. Le Twin Otter de la BAS n’est piloté que par un seul pilote mais celui-ci est toujours accompagné d’une autre personne.

Avion Twin Otter en rapprochement pour Punta Arenas, Chili.
Avion Twin Otter en rapprochement pour Punta Arenas, Chili.

N’oubliez pas d’appauvrir le mélange air/essence durant la montée. Utilisez également de l’oxygène supplémentaire (!!) si vous ne voulez pas commencer à divaguer et voler en cercles après une heure de vol. Pensez à enrichir le mélange lors de la descente, considérant que vous perdrez pratiquement 17,000 pieds.

Plein de carburant à Punta Arenas, Chili.
Plein de carburant à Punta Arenas, Chili.

La version originale de l’aéroport Punta Arenas, telle qu’elle se trouve dans FSX, n’est vraiment pas très intéressante. L’aéroport est dénudé, ne présentant qu’un seul bâtiment et un VOR.

Mais étant donné que le pilote de la société BAS effectue toujours ce trajet obligatoire avant de s’envoler pour l’Antarctique, j’ai choisi de ne pas changer le trajet. Le vol vers Punta Arenas a suivi une direction moyenne de 164 degrés et la durée a été d’environ 4 :28 heures. Vous pouvez bien sûr accélérer le processus une fois l’aéronef établi en vol de croisière.

Le dernier vol a été de Punta Arenas, au Chili, vers Rothera en Antarctique.

Avion Twin Otter en route pour l'aéroport de Rothera en Antarctique.
Avion Twin Otter en route pour l’aéroport de Rothera en Antarctique.

Le Twin Otter prend entre six et sept heures, sur un cap de 162 degrés, pour couvrir la distance entre Punta Arenas (SCCI) et Rothera (EGAR).

Au-dessus des sommets enneigés du Chili, en route vers Rothera, Antarctique
Au-dessus des sommets enneigés du Chili, en route vers Rothera, Antarctique
Transport d'une réserve de carburant en route pour Rothera, Antarctique.
Transport d’une réserve de carburant en route pour Rothera, Antarctique.

La piste de l’aéroport de Rothera est faite de gravier et mesure 2953 pieds, suffisamment longue pour le Twin Otter et le Dash-7. Avant d’effectuer le vol, allez dans votre fichier de simulateur de vol « aerosoft/Antarctica X » et cliquez sur l’option LOD 8.5 (le programme est réglé de base sur un LOD 4.5). Vous obtiendrez ainsi une définition supérieure lorsque vous approchez l’Antarctique.

La station de recherche antarctique de Rothera est en vue
La station de recherche antarctique de Rothera est en vue
Avion Twin Otter en finale pour Rothera, Antarctique.
Avion Twin Otter en finale pour Rothera, Antarctique.

La revue Airliner World a publié en mars 2017 un excellent article sur les opérations de la société BAS en Antarctique. On y trouvait de multiples photos très intéressantes et des explications détaillées sur ce que doivent anticiper les pilotes et le personnel travaillant pour la société BAS. J’ai comparé l’aéroport virtuel de Rothera avec les photos du vrai aéroport fournies par Airliner World et j’ai été étonné par le niveau de ressemblance et la précision des détails.

Avion Twin Otter de la British Antarctic Survey atterrissant sur la piste de Rothera, Antarctique
Avion Twin Otter de la British Antarctic Survey atterrissant sur la piste de Rothera, Antarctique

La société BAS est toujours prête pour les surprises : « Elle maintien un inventaire de pièces de $5m, incluant un moteur de rechange pour chaque aéronef, des hélices supplémentaires et des composants pour le train d’atterrissage ».

Avion Twin Otter de la BAS après un atterrissage sur la piste de Rothera, Antarctique
Avion Twin Otter de la BAS après un atterrissage sur la piste de Rothera, Antarctique

« Un nouveau développement pour l’Air Unit a été son association avec la RAF, utilisant un avion de transport C-130 Hercules pour parachuter du matériel sur le champs d’opérations. Ils volent de Punta Arenas et parachutent du carburant pour aider à notre programme de recherche sur le Ronne Ice Shelf. […] Cela fait partie de le système d’entraînement et la précision de leur parachutage est très impressionnante. Ils peuvent parachuter 250 barils de carburant, pensez au nombre de voyages de Twin Otter que cela aurait représenté pour nous (48 ou plus de 400 heures de vol) ».

Le hangar principal de Rothera, Antarctique.
Le hangar principal de Rothera, Antarctique.

La compagnie Aerosoft a fait un excellent travail pour répliquer Rothera, la station de recherche principale de la société BAS en Antarctique. Le hangar principal peut accomoder en même temps trois Twin Otters et un Dash-7.

Intérieur du hangar principal de la station de recherche de Rothera, Antarctique.
Intérieur du hangar principal de la station de recherche de Rothera, Antarctique.

Lorsque votre vol sera complété, n’oubliez pas de cliquer de nouveau sur LOD 4.5 pour l’Antarctique dans votre fichier aerosoft/Antarctica X.

Pour d’autres vols virtuels standards, cliquez sur le lien suivant :

Vols virtuels standards

Pour d’autres articles dans la catégorie “Simulation de vol”, cliquez sur le lien suivant : Simulation de vol

Photographie aviation: coucher de soleil sur le port de Vancouver

Twin Otter sur flotteurs C-GQKN et Turbo Otter C-FODH de la compagnie Harbour Air au moment d'un coucher de soleil dans la port de Vancouver durant l'été 2016
Twin Otter sur flotteurs C-GQKN et Turbo Otter C-FODH de la compagnie Harbour Air au moment d’un coucher de soleil dans la port de Vancouver durant l’été 2016

La photo ci-dessus a été prise avec un appareil-photo plein format Canon 5DSR dans le port de Vancouver, en Colombie-Britannique, à l’été 2016. Après une journée frénétique de décollages et d’atterrissages, le calme était maintenant revenu. Le Twin Otter sur flotteurs C-GQKN et le Turbo Otter sur flotteurs C-FODH de la compagnie Harbour Air étaient maintenant stationnés pour la nuit.

Les photos prises au crépuscule et à l’aube bénéficient d’une lumière unique. Cependant, photographier les avions à contre-jour, avec les derniers rayons de soleil encore visibles, nécessitent davantage de précautions.

Lorsque les contrastes sont trop élevés, il est possible de corriger la situation en procédant avec la prise de plusieurs photos. Il suffit d’effectuer quelques expositions différentes et de les unifier au moyen d’un logiciel comme Photomatix (photographie HDR). Cela ne prend que quelques minutes. Cependant, avec des avions sur flotteurs qui sont toujours légèrement en mouvement, même une fois attachés pour la nuit, le risque de photo floue augmente. La meilleure façon de procéder est d’utiliser un filtre ND gradué et de le placer exactement là où l’intensité de la lumière est la plus forte. Naturellement, il y aura des hautes lumières surexposées.

Ceci dit, vous avez toujours une bonne marge de manœuvre, étant donné qu’il n’y a aucun problème à montrer un montant limité de hautes lumières surexposées dans les rayons du soleil, étant donné qu’il n’y a pas vraiment de détails perdus dans cette zone. Pendant que les puristes peuvent être en désaccord et choisissent de passer des heures devant l’ordinateur à tenter de tout corriger, vous êtes à l’extérieur à profiter au maximum d’une autre journée d’exploration photographique.

Si la photo a été prise en utilisant des fichiers RAW (ou RAW et JPEG), il est possible d’améliorer la scène en corrigeant quelques éléments tels que les contrastes, la luminosité, les couleurs, la saturation et la lumière ambiante, etc. Cela ne requiert que très peu de temps devant l’ordinateur quand vous êtes familier avec les bases d’un logiciel de traitement de l’image.

Photographie aviation: la pluie au service du photographe

Twin Otter sur flotteurs C-GQKN de la compagnie aérienne Harbour Air en finale pour le Port de Vancouver, en Colombie-Britannique, durant l'été 2016. Photo prise avec un appareil-photo plein format Canon 5DSR
Twin Otter sur flotteurs C-GQKN de la compagnie aérienne Harbour Air en finale pour le Port de Vancouver, en Colombie-Britannique, durant l’été 2016. Photo prise avec un appareil-photo plein format Canon 5DSR

La journée s’annonçait plutôt ordinaire pour ma session de photographie au port de Vancouver. Le ciel était passablement banal, ce qui signifie sans nuages. Mais dès midi, une nouvelle masse d’air plus humide a fait son entrée en Colombie-Britannique et très rapidement le ciel bleu a fait place aux nuages et aux précipitations, en même temps que la lumière de forte intensité qui prévalait vers midi a soudainement diminué à un niveau plus acceptable pour la photographie.

Les pilotes des différents avions de brousse sur flotteurs tels que les Twin Otter (DHC-6), Turbo Otter (DHC-3T) et Beaver (DHC-2) ont dû composer avec la détérioration de la météo pour compléter les vols prévus dans la journée. Mais le malheur des uns fait le bonheur des autres : pour la photographie reliée à l’aviation, les nuages bas et une lumière plus tamisée signifiaient qu’il serait désormais possible d’obtenir des photos plus intéressantes.

La photo ci-dessus a été prise avec un appareil-photo plein format DSLR Canon 5DSR muni d’un téléobjectif Canon 70-200 f2.8L IS II USM. De sorte que les hélices ne soient pas figées, j’ai choisi une vitesse d’obturation passablement basse. La scène a été recadrée pour éliminer les distractions visuelles. Le capteur plein format de 50.6 mégapixels du Canon 5DSR facilite la tâche lorsqu’un recadrage est requis.

Au premier plan, on aperçoit un Twin Otter sur flotteurs (C-GQKN) de la compagnie Harbour Air en approche pour l’amerrissage dans le Port de Vancouver. Au second plan, très loin et dans le coin supérieur droit de la photo, un pilote de Turbo Otter sur flotteurs compose lui aussi avec la dégradation de la météo, en s’assurant de conserver un contact visuel avec les obstacles élevés environnants.

Photographie aviation: un Twin Otter sur flotteurs à l’amerrissage à Vancouver

Twin Otter C-FGQH sur flotteurs de Westcoast Air à l'arrivée dans la Port de Vancouver, en Colombie-Britannique durant l'été 2016. Photo prise avec un appareil-photo Canon 5DSR
Twin Otter C-FGQH sur flotteurs de Westcoast Air à l’arrivée dans la Port de Vancouver, en Colombie-Britannique durant l’été 2016. Photo prise avec un appareil-photo Canon 5DSR

La photo ci-dessus a été prise en Colombie-Britannique, durant l’été 2016, avec un appareil-photo plein format Canon 5DSR muni d’un téléobjectif Canon 70-200 f2.8L IS II USM.

Un Twin Otter sur flotteurs (DHC-6) de la compagnie Westcoast Air (C-FGQH) se préparait à amerrir dans le Port de Vancouver. Il est évident que d’ajuster la vitesse d’obturation à 1/1200 aurait suffi pour obtenir une image nette. Mais cela aurait enlevé toute impression de mouvement, en figeant les hélices et l’arrière-plan.

La vitesse d’obturation devait être suffisamment lente pour permettre la rotation des hélices. Il est clair que les hélices d’un aéronef en finale pour l’amerrissage tournent moins vite qu’au décollage. D’où la nécessité d’utiliser une vitesse maximale plus lente, variant entre 1/40 et 1/125.

Une vitesse plus lente augmente cependant le risque d’une photo floue de l’avion, spécialement parce que le photographe se doit de bouger avec l’appareil-photo pour obtenir l’effet de mouvement désiré. Le fait d’utiliser un téléobjectif augmente également la possibilité de flou de bougé et il est impératif que le stabilisateur soit activé, de même que la fonction « panning horizontal» sur l’objectif.

Pour créer un arrière-plan sans détails précis, l’appareil-photo est en mouvement et suit exactement le déplacement de l’avion. Cela nécessite donc une accélération progressive du mouvement de l’appareil-photo, en fonction de la position de l’avion par rapport au photographe.

Lorsque le Twin Otter se rapproche, le suivi devient plus compliqué, les choses s’accélèrent. Il faut déjà avoir positionné ses pieds dans la bonne direction pour n’avoir qu’un pivot à faire et non une posture complète du corps à changer. Le moindre mouvement inutile ou brusque serait immédiatement visible sur la photo.

Avec un peu de pratique, le respect des éléments suivants permettra au photographe d’obtenir un résultat concluant : une vitesse entre 1/40 et 1/125, une position appropriée des pieds, un pivot sans mouvements brusques et une accélération progressive de la rotation du corps enlignée sur la vitesse de l’avion. Plus la vitesse d’obturation sera lente et plus l’effet de mouvement sera visible. Attendez-vous cependant à davantage de photos manquées entre 1/40 et 1/60.

Un dernier détail : à l’instant même où les flotteurs de l’avion touchent l’eau, la décélération commence. La vitesse de pivot du photographe doit immédiatement ralentir sinon la photo perdra de sa netteté.

Le Twin Otter Series 400 de la compagnie Viking à Victoria en Colombie-Britannique

Twin Otter Series 400 stationné à Victoria, Colombie-Britannique, en 2016
Twin Otter Series 400 stationné à Victoria, Colombie-Britannique, en 2016

De passage à Victoria en 2016, j’en ai profité pour visiter les installations de Viking Air Ltd, la compagnie canadienne qui produit aujourd’hui le fameux Twin Otter Series 400. Cette compagnie est passablement méconnue des Canadiens car sa production est pratiquement toute destinée à l’exportation. Sur les cent avions construits jusqu’à présent, seulement deux ont été achetés par une compagnie canadienne. Viking assure également le service pour les Twin Otter des séries 100 à 300 en activité à travers le monde.

Au premier plan, un Twin Otter Series 400 fabriqué par Viking à Victoria, Colombie-Britannique. Au second plan, un bombardier d'eau CL-215 récemment acquis par Viking et qui sera possiblement modifié en CL-415.
Au premier plan, un Twin Otter Series 400 fabriqué par Viking à Victoria, Colombie-Britannique. Au second plan, un bombardier d’eau CL-215 récemment acquis par Viking et qui sera possiblement modifié en CL-415.

Début 2016, Bombardier et Viking ont conclu une entente commerciale qui fait en sorte que c’est maintenant Viking qui est le nouveau propriétaire des brevets et plans de fabrication des bombardiers d’eau CL-215 et CL-415. Viking s’occupe non seulement du service pour les aéronefs existants mais évalue également la possibilité de relancer la production de ces appareils. Tout dépendra de la demande. Mais avec des conditions météorologiques de plus en plus extrêmes qui favorisent un nombre accru de feux de forêts dévastateurs, il est permis de croire que nous verrons d’ici quelques années les premiers bombardiers d’eau fabriqués par Viking.

À Victoria, un Twin Otter Series 400 sur flotteurs fabriqué par Viking a été acheté par Reignwood Air. Il est prêt à être livré en Chine (2016).
À Victoria, un Twin Otter Series 400 sur flotteurs fabriqué par Viking a été acheté par Reignwood Air. Il est prêt à être livré en Chine (2016).

Avec les changements actuellement en cours dans la règlementation en Chine, Viking est confiant de voir augmenter ses commandes de Twin Otter Series 400 sur flotteurs. La compagnie recevra en 2016, à leurs installations de Victoria, le premier simulateur de vol essentiellement destiné à la formation de pilotes opérant le Twin Otter sur flotteurs.

Un Twin Otter Series 400 de Viking, à Victoria, prêt à être livré en Russie
Un Twin Otter Series 400 de Viking, à Victoria, prêt à être livré en Russie

Pour l’instant, la Russie demeure le plus important client de Viking, malgré quelques soubresauts reliés à la crise politique entre ce pays et l’Ukraine et la dévaluation du rouble qui ont forcé un ralentissement de la cadence de production des appareils destinés aux compagnies russes. La situation se stabilisant au niveau politique, l’embauche a repris chez Viking et le nombre d’employés atteindrait aujourd’hui au moins 350 employés, si ma mémoire est bonne.

Turbo Otter DHC-3T C-GVTO à Victoria, Canada, en 2016
Turbo Otter DHC-3T C-GVTO à Victoria, Canada, en 2016

La plupart des Canadiens ignorent aujourd’hui qu’une compagnie canadienne a repris la production des fameux Twin Otter et se prépare possiblement à relancer la production des CL-415. Plusieurs associent Viking à une compagnie qui transporte des passagers dans la région de Vancouver. Entretemps, quelques CL-215s récemment acquis par Viking seront possiblement convertis dans la version plus puissante du CL-415. Il ne faudra cependant qu’une bonne commande de Harbour Air ou d’une autre compagnie canadienne bien connue pour que le nom de Viking devienne aussi connu que celui de Bombardier ou De Havilland.

Pour d’autres articles sur la photographie et l’aviation, cliquez sur le lien suivant: photographie aviation

Simulation de vol : les aéroports de « Tapini» en Papouasie Nouvelle-Guinée (FSX)

Un DHC-6 Twin Otter virtuel en route pour Kokoda après un feu sur le moteur droit au départ de Yongai (KGH) en Papouasie Nouvelle-Guinée PNG (FSX)
Un DHC-6 Twin Otter virtuel en route pour Kokoda après un feu sur le moteur droit au départ de Yongai (KGH) en Papouasie Nouvelle-Guinée PNG (FSX)

Ken Hall et Tim Harris ont créé une nouvelle scène virtuelle pour les amateurs de simulation de vol. Elle se nomme « Tapini» et est vendue par ORBX. Leur avant-dernière création, AYPY Jackson’s International, permettait aux pilotes virtuels de voler vers des aéroports virtuels très exigeants le long de la Kokoda Trail en Papouasie Nouvelle-Guinée. « Tapini » représente un tout nouveau défi et j’ai inclus plusieurs captures d’écran pour vous donner une impression générale des différentes pistes incluses dans cette nouvelle scène virtuelle.

« Tapini », toujours en Papouasie Nouvelle-Guinée, permet aux pilotes virtuels de se mesurer aux défis présentés par sept nouvelles pistes d’atterrissage dans la chaîne de montagnes Owen Stanley. Ces aéroports constituent également un sérieux test pour les aéronefs, comme dans la photo ci-dessus où des dommages au moteur droit ont été subis à Yongai.

Un Piper Pacer virtuel s'apprête à atterrir sur la piste courbée d'Ononge (ONB) en Papouasie Nouvelle-Guinée PNG (FSX). (Il est possible de voir la courbe débutant au haut de l'image)
Un Piper Pacer virtuel s’apprête à atterrir sur la piste courbée d’Ononge (ONB) en Papouasie Nouvelle-Guinée PNG (FSX). (Il est possible de voir la courbe débutant au haut de l’image)

Pour améliorer les nuages virtuels lors des voyages entre les différents aéroports, j’ai utilisé les moteurs météo REX ou FSGRW. Les textures de nuages et les effets météo ont été améliorés par un ou plusieurs des produits suivants : CumulusX, PrecipitFX, REX Texture Direct et REX Soft Clouds.

Un Dash 7 virtuel après son atterrissage sur l'aéroport de Woitape (WTP) en Papouasie Nouvelle-Guinée PNG (FSX)
Un Dash 7 virtuel après son atterrissage sur l’aéroport de Woitape (WTP) en Papouasie Nouvelle-Guinée PNG (FSX)

Comme il y a du plaisir dans la variété, et également dû aux défis posés par les différentes pistes, les avions virtuels suivants ont été utilisés : Carenado C-185F, Lionheart Creations PA-18, Virtavia DHC-4, Aerosoft DHC-6 Twin Otter et Milton Shupe De Havilland DHC-7.

La scène « Tapini » offre au pilote la sélection des sept pistes suivantes :

ASB (Asimba)

Une piste difficile et très courte près d’une rivière

Un DHC-4 Caribou virtuel en approche pour la piste en pente d'Asimba (ASB) en Papouasie Nouvelle-Guinée PNG (FSX)
Un DHC-4 Caribou virtuel en approche pour la piste en pente d’Asimba (ASB) en Papouasie Nouvelle-Guinée PNG (FSX)

Il s’agit d’une piste très intéressante où un avion ADAC tel que le DHC-4 Caribou est approprié. Les habitants doivent cependant offrir leur aide pour vous aider à dégager quelques branches près de la piste et qui sont susceptibles de nuire à un appareil de cette taille. La piste est en pente vers le bas pour le décollage, ce qui aide l’avion à gagner de la vitesse plus rapidement.

Un DHC-4 Caribou virtuel au sol sur la piste d'Asimba (ASB) en Papouasie Nouvelle-Guinée PNG (FSX)
Un DHC-4 Caribou virtuel au sol sur la piste d’Asimba (ASB) en Papouasie Nouvelle-Guinée PNG (FSX)
Un DHC-4 Caribou virtuel décolle de la piste en pente d'Asimba (ASB) en Papouasie Nouvelle-Guinée PNG (FSX)
Un DHC-4 Caribou virtuel décolle de la piste en pente d’Asimba (ASB) en Papouasie Nouvelle-Guinée PNG (FSX)

FNE (Fane)

Une piste en pente de 12 degrés présentant un vrai défi. Des vents imprévisibles soufflent sur cette piste à sens unique située en haut d’une colline.

Un avion virtuel De Havilland DHC-7 est en approche pour un atterrissage sur la piste en pente de l'aéroport de Fane (FNE) en Papouasie Nouvelle-Guinée PNG (FSX).
Un avion virtuel De Havilland DHC-7 est en approche pour un atterrissage sur la piste en pente de l’aéroport de Fane (FNE) en Papouasie Nouvelle-Guinée PNG (FSX).

La piste est située au-dessus d’une colline. Atterrir sur cette piste est une expérience vraiment intéressante : pas étonnant qu’il y ait autant de personnes surveillant les arrivées et départs.

Si vous ralentissez trop rapidement après l’atterrissage sur cette piste en pente avec un avion tel que le DHC-7, les douze degrés empêcheront l’appareil de continuer à se déplacer vers l’avant. Vous devrez alors laisser l’avion redescendre doucement la pente en utilisant le pouvoir des moteurs pour contrôler la descente. Le palonnier sera utilisé pour demeurer aligné avec la piste. Il s’agira ensuite d’appliquer de nouveau la pleine puissance pour quelques secondes, juste assez pour franchir la pente.

Un avion virtuel De Havilland DHC-7 circule après un atterrissage sur la piste en pente de l'aéroport de Fane (FNE) en Papouasie Nouvelle-Guinée PNG (FSX)
Un avion virtuel De Havilland DHC-7 circule après un atterrissage sur la piste en pente de l’aéroport de Fane (FNE) en Papouasie Nouvelle-Guinée PNG (FSX)

Pour circuler au sol et replacer le DHC-7 pour le décollage, une combinaison de pouvoir et de poussée inverse est nécessaire jusqu’à ce que tous les obstacles aient été évités (les humains s’aventurant à l’arrière de l’appareil pendant la procédure pourraient être affectés…).

Un avion virtuel De Havilland DHC-7 décolle de la piste en pente de l'aéroport de Fane (FNE) en Papouasie Nouvelle-Guinée PNG (FSX)
Un avion virtuel De Havilland DHC-7 décolle de la piste en pente de l’aéroport de Fane (FNE) en Papouasie Nouvelle-Guinée PNG (FSX)

Il y a un homme qui n’a pas l’air trop amical et qui tient une carabine près de la zone d’embarquement. Même le personnel des Nations-Unies n’a pas jugé bon de s’éterniser…

KGH (Yongai)

Une piste très bosselée et à sens unique. Un vrai avion de brousse est ici requis!

Un DHC-6 Twin Otter virtuel en approche pour la piste bosselée de Yongai (KGH) en Papouasie Nouvelle-Guinée PNG (FSX)
Un DHC-6 Twin Otter virtuel en approche pour la piste bosselée de Yongai (KGH) en Papouasie Nouvelle-Guinée PNG (FSX)

Même avec un très bon avion de brousse, il est possible qu’une des hélices de l’appareil touche le sol au moment de circuler sur cette piste vraiment spéciale. Il y a tellement de trous profonds et de bosses qui sont difficiles à voir que je ne peux que souhaiter bonne chance à toute personne s’aventurant sur cet aéroport!

Un DHC-6 Twin Otter virtuel au sol sur la piste de Yongai (KGH) en Papouasie Nouvelle-Guinée PNG (FSX)
Un DHC-6 Twin Otter virtuel au sol sur la piste de Yongai (KGH) en Papouasie Nouvelle-Guinée PNG (FSX)

Portez une attention particulière à la zone près de la petite maison en fin de piste. Le DHC-6 a vraiment été secoué en effectuant les manœuvres pour se repositionner pour le décollage. Une des hélices a touché le sol, mais il n’y avait pas de signes de problème sérieux… jusqu’à ce que l’avion redécolle. L’alarme de feu a retenti juste au moment où l’appareil franchissait le seuil de piste.

Un DHC-6 Twin Otter virtuel avec le moteur droit en feu au décollage de Yongai en Papouasie Nouvelle-Guinée PNG (FSX)
Un DHC-6 Twin Otter virtuel avec le moteur droit en feu au décollage de Yongai en Papouasie Nouvelle-Guinée PNG (FSX)

Il a donc fallu abandonner le voyage prévu. Et pas question de retourner à Yongai sur un moteur. J’ai tiré la manette pour éteindre le feu, mis l’hélice en drapeau et coupé l’alimentation en carburant sur le moteur droit pour ensuite me diriger vers l’aéroport de Kokoda étant donné qu’il s’agissait d’un déroutement sûr dû au fait que la piste est suffisamment longue et à une altitude beaucoup plus basse que Yongai.

KSP (Kosipe)

Une piste relativement courte qui requiert des calculs précis de la part du pilote étant donné sa haute altitude dans les montagnes.

Un Cessna C-185F virtuel en route pour l'aéroport de Kosipe (KSP) en Papouasie Nouvelle-Guinée PNG (FSX)
Un Cessna C-185F virtuel en route pour l’aéroport de Kosipe (KSP) en Papouasie Nouvelle-Guinée PNG (FSX)

Le Cessna C-185F est très approprié pour cette courte piste. Assurez-vous de ne pas appuyer trop fortement sur les freins à l’arrivée, car les hélices de C-185 sont difficiles à trouver à Kosipe. Vous pouvez atterrir dans les deux directions. Le mélange air/essence doit être absolument ajusté, car l’aéroport se trouve à plus de 6300 pieds.

Un Cessna C-185F virtuel à l'atterrissage sur la piste de Kosipe (KSP) en Papouasie Nouvelle-Guinée PNG (FSX)
Un Cessna C-185F virtuel à l’atterrissage sur la piste de Kosipe (KSP) en Papouasie Nouvelle-Guinée PNG (FSX)
Un Cessna C-185F virtuel au décollage de la piste de Kosipe (KSP) en Papouasie Nouvelle-Guinée PNG (FSX)
Un Cessna C-185F virtuel au décollage de la piste de Kosipe (KSP) en Papouasie Nouvelle-Guinée PNG (FSX)

ONB (Ononge)

Une piste courbée et très bosselée. Pour ceux qui aiment les vols en rase-mottes. Assurez-vous de choisir le bon appareil, car il n’y a pas beaucoup de place pour manœuvrer une fois au sol.

Un Piper Pacer virtuel en approche pour la piste courbée d'Ononge (ONB) en Papouasie-Nouvelle Guinée PNG (FSX)
Un Piper Pacer virtuel en approche pour la piste courbée d’Ononge (ONB) en Papouasie-Nouvelle Guinée PNG (FSX)

Ononge est assez impressionnant lorsqu’on se présente en finale pour la première fois. On se demande si la petite trace de terre sur le dessus de la colline peut vraiment être une piste d’atterrissage. Pour ce genre de situation, le Piper Pacer est un excellent avion : il peut approcher très lentement et s’immobilise sur une courte distance. La piste étant courbée, il est nécessaire d’utiliser un peu de palonnier pour maintenir l’avion au milieu de la piste.

A Virtual Piper Pacer on the Ononge curved runway in Papua New Guinea PNG (FSX)
A Virtual Piper Pacer on the Ononge curved runway in Papua New Guinea PNG (FSX)

J’imagine que tous ces gens avec leurs valises s’attendaient à un avion un peu plus gros…

Un Piper Pacer virtuel au décollage de la piste courbée d'Ononge (ONB) en Papouasie-Nouvelle Guinée PNG (FSX)
Un Piper Pacer virtuel au décollage de la piste courbée d’Ononge (ONB) en Papouasie-Nouvelle Guinée PNG (FSX)

TAP (Tapini)

Une piste exigeante à sens unique et située près d’une vallée étroite. Vous pouvez même utiliser un ILS pour vous y rendre!

Un DHC-4 Caribou en approche finale pour l'aéroport de Tapini (TAP) en Papouasie Nouvelle-Guinée PNG (FSX)
Un DHC-4 Caribou en approche finale pour l’aéroport de Tapini (TAP) en Papouasie Nouvelle-Guinée PNG (FSX)

Il s’agit d’une région et d’un aéroport superbement modélisés. Je l’ai visitée avec le DHC-4 Caribou, mais tout autre gros avion ADAC aurait fait l’affaire. Il y a suffisamment de place pour manœuvrer. La piste n’est pas trop bosselée. La pente est intéressante : elle débute en descendant et se termine en montant : cela aide l’aéronef à ralentir après l’atterrissage.

Un DHC-4 Caribou au sol à l'aéroport de Tapini (TAP) en Papouasie Nouvelle-Guinée PNG (FSX)
Un DHC-4 Caribou au sol à l’aéroport de Tapini (TAP) en Papouasie Nouvelle-Guinée PNG (FSX)
Un DHC-4 Caribou virtuel décolle de l'aéroport de Tapini (TAP) en Papouasie Nouvelle-Guinée PNG (FSX)
Un DHC-4 Caribou virtuel décolle de l’aéroport de Tapini (TAP) en Papouasie Nouvelle-Guinée PNG (FSX)

WTP (Woitape)

Cette piste à sens unique et en pente légère semble assez facile d’usage mais elle nécessite des calculs et ajustements assez précis si vous désirez vous y poser avec autre chose qu’un petit appareil.

Un De Havilland DHC-7 virtuel en approche finale pour l'aéroport virtuel de Woitape airport (WTP) en Papouasie Nouvelle-Guinée (FSX)
Un De Havilland DHC-7 virtuel en approche finale pour l’aéroport virtuel de Woitape airport (WTP) en Papouasie Nouvelle-Guinée (FSX)

J’ai trouvé que la piste était assez glissante pour le De Havilland DHC-7. Je dois avouer qu’il y avait un vent de côté important (je volais en météo réelle téléchargée par internet). Le DHC-7 se comporte comme un gros bateau lorsqu’il décélère sur une telle piste.

Un De Havilland DHC-7 virtuel ainsi que deux DHC-6 au sol à l'aéroport virtuel de Woitape airport (WTP) en Papouasie Nouvelle-Guinée (FSX)
Un De Havilland DHC-7 virtuel ainsi que deux DHC-6 au sol à l’aéroport virtuel de Woitape airport (WTP) en Papouasie Nouvelle-Guinée (FSX)

La scène virtuelle de Woitape est superbe. Il est très intéressant de trouver des animaux, personnes et avions virtuels conçus de façon aussi réaliste.

Un De Havilland DHC-7 virtuel au décollage de Woitape (WTP), Papouasie Nouvelle-Guinée, (FSX)
Un De Havilland DHC-7 virtuel au décollage de Woitape (WTP), Papouasie Nouvelle-Guinée, (FSX)

J’adore ce nouveau produit de la compagnie Orbx. Lorsque vous volez dans un paysage aussi réaliste, le cerveau ne fait pas de différence entre ce qui est réel et ce qui est virtuel. Cela fonctionne vraiment! Et si vous utilisez la météo réelle téléchargée de l’internet, c’est encore mieux!

J’ai essayé les sept aéroports inclus dans la scène virtuelle « Tapini » et ils sont exigeants. Yongai a été pour moi celui présentant le plus grand défi. J’ai dû faire deux approches manquées étant donné que je me suis présenté chaque fois trop haut sur l’approche. Mais j’ai éventuellement réussi, comme dans la vraie vie!

Le logiciel Microsoft flight simulator X (FSX) a été utilisé pour tous les vols, mais d’autres plateformes auraient également très bien fonctionné et donné d’excellents résultats (Dovetail Games FSX Steam edition (FSX: SE) et toutes les versions de P3D). Les produits suivants étaient également installés sur mon simulateur de vol : FTX Global, FTX Golbal Vector et Holgermesh, de même que Pilot’s FS Global 2010.

Il s’agit d’une expérience virtuelle totalement immersive et vous devez vous concentrer totalement lorsque vous tentez ces vols virtuels exigeants… si vous désirez en ressortir « virtuellement » vivant!

Pour d’autres articles dans la catégorie “Simulation de vol”, cliquez sur le lien suivant : Simulation de vol

Simulation de vol : Saint-Barthélemy (TFFJ) avec le Twin Otter d’Aerosoft sous FSX

Commençons avec une vidéo montrant qu’il n’y a pas vraiment de marge d’erreur lorsque l’on tente un atterrissage à l’aéroport Saint-Jean-Gustave III (Saint-Barthélemy) :

Sur cette vidéo, il est possible de constater qu’une vitesse d’approche excessive de l’aéronef le force à flotter au-dessus de la piste pendant de précieuses secondes. Rapidement, il n’y a plus assez de piste restante pour permettre à l’aéronef de s’immobiliser en sécurité.

Il faut donc s’assurer que la vitesse d’approche soit minimale et être prêt à effectuer une approche manquée si les roues ne touchent pas suffisamment rapidement à la piste.

Une approche avec un aéronef virtuel de votre choix peut être effectuée à Saint-Barthélemy (TFFJ) étant donné qu’une reproduction de l’aéroport est offerte dans la scène de FlyTampa St Maarten. J’ai tenté un circuit avec le Twin Otter d’Aerosoft, sous FSX, et cela s’est bien passé, étant donné que cet aéronef peut voler à de très basses vitesses et freiner sur une très courte distance.

Cessna 208B N208SG en finale piste 10 pour l'aéroport de Saint Barthelémy, Guadeloupe (sur carte postale aviation)
Cessna 208B N208SG en finale piste 10 pour l’aéroport de Saint Barthelémy, Guadeloupe (sur carte postale aviation)

Pour votre information, la piste 10/28 de l’aéroport de Saint-Barthélemy a une longueur de 2133 ft (650m). Pour l’atterrissage, les vents soufflaient du 031/10G20, ce qui offrait un bon vent de travers. Le plus gros aéronef à avoir atterri à Saint-Barthélemy est un de Havilland DHC-7 de construction canadienne.

Bonne chance dans vos essais à tenter ce vol virtuel! Dans la section “simulation de vol” vous trouverez d’autres idées de vols virtuels exigeants.

Pour d’autres articles dans la catégorie “Simulation de vol”, cliquez sur le lien suivant : Simulation de vol

Simulation de vol : l’aéroport Juancho E. Yrausquin et la plus petite piste commerciale au monde (FSX)

Un vol virtuel exigeant sous FSX est assuré lorsque vous utilisez l’aéroport Juancho E. Yrausquin car il possède la plus petite piste pour aéronefs commerciaux au monde. La piste ne fait que 1299 pieds de long (396m) et 60 pieds (18m) au-dessus du niveau de la mer. Le code IATA est SAB et le code ICAO est TNCS.

L’aéronef virtuel idéal pour cette piste peut être le Twin Otter (DHC-6) ou le Britten Islander (BN-2). Si vous désirez quelque chose de plus gros, le DHC-7 de De Havilland est parfait. Oubliez les réactés, la piste est trop courte.

Pour ajouter un peu de plaisir, utilisez la piste 30 et sélectionnez des vents de travers importants, avec rafales. Dans les captures d’écran ci-dessous, j’ai ajusté les vents sur l’approche à 030 degrés à 10G20. Pour le vol, j’ai également utilisé CumulusX et PrecipitFX de façon à améliorer l’effet visuel.

Pour une expérience encore plus réaliste, je vous suggère de vous procurer la scène FlyTampa St. Maarten. Cela vous permettra d’avoir accès à trois aéroports aux approches spectaculaires : l’aéroport de Juancho E. Yrausquin, sur l’île de Saba, l’aéroport de St-Barthélémy (TFFJ) et l’aéroport international Princess Juliana à St. Martin (St.Maarten).

Dans la section « vols virtuels exigeants » de mon site web, j’ai déjà inclus l’approche à l’aéroport Princess Juliana au moyen d’un MD-11. L’approche à St.Barthélémy (TFFJ) sera ajoutée sous peu.

Vous vous amuserez intensément à tenter de réussir les différentes approches à ces trois aéroports. Si vous désirez d’autres idées de vols virtuels exigeants, visitez la section “simulation de vol“.

Je vous souhaite beaucoup de plaisir!

Pour d’autres articles dans la catégorie “Simulation de vol”, cliquez sur le lien suivant : Simulation de vol

Simulation de vol : Lukla, l’aéroport le plus dangereux au monde (FSX)

Si vous recherchez un vol virtuel exigeant, pourquoi ne pas essayer le trajet SyangbocheLukla avec le DHC-6 Twin Otter de la compagnie Aerosoft? Il s’agit d’un vol de très courte durée, quelques minutes seulement, où l’avion est continuellement en descente jusqu’à sa destination.

L’approche à Lukla est trompeuse, à cause d’une piste en pente de12 degrés. Vous avez l’impression d’arriver trop vite, mais il faut résister à la tentation de diminuer la vitesse : à cette altitude, le décrochage survient à une vitesse plus élevée avec n’importe quel aéronef.

Il n’y a qu’une piste pour l’atterrissage, la 06. Les départs ne se font que de la piste 24. Il n’y a pas vraiment de possibilité d’approche manquée : c’est la réussite ou l’écrasement, car devant vous se trouve une paroi rocheuse insurmontable.

Le vol se fait donc au départ de Syangboche (code OACI :VNSB, altitude : 3748m et piste de 400m) vers Lukla (code OACI :VNLK, altitude 2860m et piste de 460m).

Le paysage et les objets autour de Syangboche sont une création de la compagnie ORBX. Une fois en rapprochement de Lukla, vous observerez un changement dans la conception du paysage : c’est que la scène n’est plus de la compagnie Orbx, mais plutôt une addition que vous devrez vous procurer: Aerosoft (Lukla). L’intégration des deux paysages est tout de même très bien réussie.

Ce vol exigera toute votre attention. Bonne chance! Pour d’autres idées de vos exigeants, visitez la section “simulation de vol“.

Pour d’autres articles dans la catégorie “Simulation de vol”, cliquez sur le lien suivant : Simulation de vol