Catégories
Simulation de vol

Tour du monde en simulation de vol (2)

Montée d'Iqaluit (CYFB) vers Kangerlussuaq (BGSF)
Montée d’Iqaluit (CYFB) vers Kangerlussuaq (BGSF)

Pour cette deuxième étape du tour du monde en simulation de vol, le départ d’Iqaluit (CYFB) s’effectue dans des conditions météorologiques exécrables, mais rapidement l’appareil se retrouve au-dessus des nuages et se dirige vers une zone de haute pression. Le ciel sera de plus en plus dégagé près de Kangerlussuaq (BGSF) au Groënland. L’approche se fera pour la piste 09.

Vols virtuels CYFB BGSF BIIS
Vols virtuels CYFB BGSF BIIS

La carte montre l’itinéraire prévu : départ d’Iqaluit (CYFB), escale à Kangerlussuaq (BGSF) et arrivée à destination en Islande, à l’aéroport d’Isafjordur (BIIS).

Cessna Citation Longitude virtuel en approche finale pour l'aéroport de Kangerlussuaq (BGSF)
Cessna Citation Longitude virtuel en approche finale pour l’aéroport de Kangerlussuaq (BGSF)

Ci-dessus, l’approche pour la piste 09. Il faut vraiment bien se préparer pour une destination comme BGSF. Si le pilote arrive après que la tour est fermée, les amendes sont très salées. Le pilote doit généralement compter avec un peu de turbulence mécanique en approche pour la piste 09, car les montagnes de chaque côté de l’aéronef changent la circulation de l’air.

Quand je travaillais à la station d’information de vol d’Iqaluit (CYFB), de nombreux pilotes montaient nous voir à la tour pour planifier leur vol vers BGSF. Le problème qui se posait le plus fréquemment était l’heure de fermeture de la tour de contrôle à Kangerlussuaq. Ils savaient qu’une forte amende les attendaient en cas d’arrivée tardive, souvent causée par des vents plus forts que prévus ou une heure de départ trop juste d’Iqaluit. Souvent, ils choisirent de dormir à Iqaluit et quitter le lendemain, plutôt que de forcer la note et se retrouver avec une facture de 1500,00 $ à payer.

Nous avions également des pilotes qui convoyaient des monomoteurs au-dessus de l’océan entre l’Europe et l’Amérique. Dans ce cas, la météo se devait d’être excellente et le commandant de bord devait avoir l’équipement requis à bord pour tenter (et je dis bien tenter) de survivre dans l’océan en cas de panne de moteur.

Cessna Citation Longitude stationné à Kangerlussuaq (BGSF)
Cessna Citation Longitude stationné à Kangerlussuaq (BGSF)

Ci-dessus, une vue partielle de l’aéroport virtuel de Kangerlussuaq (BGSF) où l’on note le Cessna Citation Longitude à l’arrêt. De l’autre côté de la piste (invisible ici), l’aéroport reçoit des aéronefs militaires.

En montée de (BGSF) Kangerlussuaq vers (BIIS) Isafjordur
En montée de (BGSF) Kangerlussuaq vers (BIIS) Isafjordur

Le lendemain, après une escale à Kangerlussuaq, il est temps de continuer la route vers Isafjordur. Le décollage s’effectue piste 27. Le système de réchauffement du tube pitot et la protection contre le givrage sont activés avant de pénétrer dans la couche nuageuse.

En montée de l'aéroport de Kangerlussuaq (BGSF)
En montée de l’aéroport de Kangerlussuaq (BGSF)

Voler en météo réelle permet d’obtenir des captures d’écran inattendues.

Le Cessna Longitude arrive au-dessus de l'Islande en simulation de vol
Le Cessna Longitude arrive au-dessus de l’Islande en simulation de vol

Ci-dessus, le relief de l’Islande un peu avant l’arrivée à l’aéroport d’Isafjordur (BIIS). Comme prévu, le ciel est dégagé.

En approche pour Isafjordur (BIIS) avec le Cessna Citation Longitude de la compagnie Asobo
En approche pour Isafjordur (BIIS) avec le Cessna Citation Longitude de la compagnie Asobo

L’approche à Isafjordur est exigeante spécialement quand on pilote un jet comme le Cessna Citation Longitude. On doit se garder de la vitesse supplémentaire lors du virage prononcé vers la gauche pour ne pas décrocher. J’ai fait le virage en descente à 160 nœuds pour arriver au seuil de piste à la bonne hauteur. Vers la fin de l’approche, quand l’angle du virage diminue, il faut immédiatement réduire la vitesse autour de 135 nœuds.

Le Cessna Citation Longitude virtuel quitte la piste à l'aéroport d'Isafjordur (BIIS)
Le Cessna Citation Longitude virtuel quitte la piste à l’aéroport d’Isafjordur (BIIS)

Contrairement à la vraie vie, il est difficile d’avoir une vue constante sur la piste lors d’une approche virtuelle en virage serré. J’aurais besoin de lunettes 3D pour permettre d’alterner rapidement entre la vue à l’extérieur et la surveillance des instruments. Après deux approches manquées où je me retrouve un peu trop haut par rapport au seuil de piste, je réussis néanmoins l’atterrissage. Le tableau de bord indique cependant que les freins ont été sollicités, ce qui ne m’étonne pas vraiment. Il y a des approches plus reposantes…

La prochaine étape de ce tour du monde se fera à partir d’Isafjordur jusqu’à Vagar (EKVG) dans les îles Féroé.

Cliquez sur le lien pour d’autres vols autour du monde en simulation de vol sur mon blogue.

Catégories
Simulation de vol

Tour du monde en simulation de vol (1)

Le F-14 Tomcat au travail au-dessus de la mer.
Le F-14 Tomcat au travail au-dessus de la mer.

La simulation de vol avec Microsoft Flight Simulator permet de survoler la planète comme jamais à partir de chez soi. Étant donné qu’à chaque instant à travers le monde les aéroports transmettent des observations météorologiques, on peut importer ces données dans le simulateur et progresser virtuellement dans les conditions météo réelles rapportées autour du globe.

Ces données améliorent la sensation de réalité pour le pilote virtuel, mais compliquent du même coup la tâche de ce dernier, car il doit tenir compte de la présence d’orages et de givrage, des vents en surface et en altitude, des changements de couvert nuageux, de visibilité, de pression, etc.

Le pilote virtuel d’aujourd’hui, s’il possède un aéronef virtuel de grande qualité, doit également prévoir que des pannes de tous genres puissent affecter le vol. Le ou les moteurs peuvent tomber en panne, un problème structurel peut affecter les commandes de l’avion, les équipements de navigation peuvent cesser de fonctionner. Une bonne planification devient nécessaire, comme dans la vraie vie. Et comme le cerveau ne fait pas trop de différence entre le réel et le virtuel, le plaisir est au rendez-vous.

J’ai donc décidé de faire le tour du monde en millionnaire et à mon rythme, c’est-à-dire que j’utilise les types d’avions qui me tentent et je vole sur les trajets qui présentent un intérêt particulier. Le tout se fera en météo réelle, avec les joies et les obstacles qu’elle présente. Je publierai à l’occasion un de ces trajets sur mon blogue.

Le trajet initial s’effectue avec un départ de l’aéroport de Jean-Lesage de Québec (CYQB) passe par Goose Bay (CYYR), dans la province de Terre-Neuve et Labrador au Canada, monte ensuite vers Kuujjuaq et se termine à Iqaluit (CYFB).

Le vol virtuel 2 présentera quelques photos de la traversée de l’Atlantique en passant par le Groënland via Kangerlussuaq (BGSF) et l’Islande via Isafjordur (BIIS).

L’aéroport de Isafjordur est considéré extrême pour son approche exigeante. Je ne sais pas si le Cessna Citation Longitude pourra y atterrir en un morceau, mais je compte bien essayer.

Vol virtuel 1

Vols virtuel CYQB CYYR CYVP CYFB
Vols virtuel CYQB CYYR CYVP CYFB
En route de l'aéroport de Québec (CYQB) et Goose Bay (CYYR).
En route de l’aéroport de Québec (CYQB) et Goose Bay (CYYR).

Ci-dessus, le soleil couchant éclaire les nuages et le Cessna Citation Longitude au décollage de Québec vers Goose Bay. À haute altitude, le pilote règle l’altimètre sur la pression atmosphérique standard, soit 29,92 pouces de mercure. Étant donné que tous les autres pilotes font de même, on s’assure d’une séparation sécuritaire entre les appareils.

En approche pour l'aéroport de Kuujjuaq (CYVP) au Québec.
En approche pour l’aéroport de Kuujjuaq (CYVP) au Québec.

Le lendemain, l’avion approche de Kuujjuaq (CYVP) au Nunavik. L’altimètre a été réglé à la pression atmosphérique de l’aéroport pour refléter une bonne hauteur des pistes d’atterrissage par rapport à l’avion. Près de l’aéroport, on débranche le pilote automatique et l’approche se fait manuellement et à vue. La vitesse désirée se situe autour de 135 nœuds pour la finale.

Départ de Kuujjuaq (CYVP) vers Iqaluit (CYFB).
Départ de Kuujjuaq (CYVP) vers Iqaluit (CYFB).

Ci-dessus, le jet décolle de Kuujjuaq en direction d’Iqaluit (CYFB) sur l’île de Baffin au Nunavut.

En route vers l'aéroport d'Iqaluit (CYFB)
En route vers l’aéroport d’Iqaluit (CYFB)

Le soleil couchant éclaire les hublots de l’appareil. Nous approchons Iqaluit. La descente se fait graduellement pour ne pas susciter d’inconfort aux passagers virtuels…

En finale pour la piste 34 de l'aéroport d'Iqaluit (CYFB)
En finale pour la piste 34 de l’aéroport d’Iqaluit (CYFB)

Ci-dessus, l’aéronef se trouve en finale pour la piste 34 d’Iqaluit (CYFB).

La tour de la station d'information de vol (FSS) de Iqaluit (CYFB)
La tour de la station d’information de vol (FSS) de Iqaluit (CYFB)

La première étape de vol virtuel autour du monde se termine à Iqaluit, cet aéroport où j’ai travaillé pendant deux ans et demi à titre de spécialiste en information de vol (FSS) dans la tour jaune visible à gauche sur la photo.

Des spécialistes en information de vol au travail à la station FSS d'Iqaluit en 1989
Des spécialistes en information de vol au travail à la station FSS d’Iqaluit en 1989

Ci-dessus, une photo de l’intérieur de la station d’information de vol à l’époque. Un FSS travaillait sur les arrivées et départs à l’aéroport alors que l’autre s’occupait des vols transatlantiques entre l’Europe et principalement l’ouest des États-Unis.

Cliquez sur le lien pour d’autres vols autour du monde en simulation de vol sur mon blogue.

Catégories
Simulation de vol

Un bimoteur BE-58 atterrit sur un porte-avions.

Un bimoteur Baron Be-58 en approche pour le porte-avions Gerald R. Ford
Un bimoteur Baron Be-58 en approche pour le porte-avions Gerald R. Ford

Voici un vol virtuel effectué sur un simulateur de vol en utilisant le logiciel Microsoft Flight Simulator. Un Beech Baron BE-58 a quitté il y a quelques minutes l’aéroport de Key West en Floride (KEYW) pour se diriger vers le porte-avions CVN78 USS Gerald R. Ford.

Dans le monde réel, cela ne se fait pas. Mais en simulation de vol, tout est permis. Ci-dessus, l’avion termine l’étape du vent arrière pour son approche vers le porte-avions.

En finale stabilisée avec pleins volets et train d’atterrissage sorti, l’attention se porte sur l’angle d’approche et la vitesse de décrochage qui se situe à 73 nœuds.

Le Beech Baron Be-58 en finale pour le porte-avions Gerarld R. Ford
Le Beech Baron Be-58 en finale pour le porte-avions Gerald R. Ford

On ne peut compter sur un câble pour arrêter l’avion, il faut donc avoir la plus petite vitesse possible et des freins en bon état pour le poser sur les 333 mètres du pont. Ci-dessous, le Beech attire un peu la curiosité au moment de circuler pour trouver un stationnement temporaire.

Le BE-58 circule pour un stationnement sur le porte-avions.
Le BE-58 circule pour un stationnement sur le porte-avions.

Le pilote virtuel stationne par la suite l’aéronef pour la prochaine journée.

Stationné pour la nuit sur le CVN78 Gerald R. Ford
Stationné pour la nuit sur le CVN78 Gerald R. Ford

Les deux images suivantes montrent le porte-avions affrontant une tempête le lendemain en soirée, avec des vents soufflant à 35 nœuds durant un orage. Sur le pont, le premier avion sur la gauche est notre Baron Be-58 qui tient le coup. Si la tempête ne le passe pas par-dessus bord, les militaires s’en chargeront bientôt !

Le porte-avions CVN 78 Gerald R. Ford dans une tempête.
Le porte-avions CVN 78 Gerald R. Ford dans une tempête.
Le porte-avions Gerald R. Ford près de Key West aux États-Unis.
Le porte-avions Gerald R. Ford près de Key West aux États-Unis.

Cliquez sur le lien pour d’autres vols virtuels exigeants sur mon blogue.

Catégories
Simulation de vol

Le Jungfraujoch en simulation de vol.

En train en direction du Jungfraujoch, Suisse 2013.
En train en direction du Jungfraujoch, Suisse 2013.

Il y a dix ans cette année, nous prenions le train qui mène à la plus haute gare d’Europe.

Observatoire astronomique du Sphinx sur le Jungfraujoch
Observatoire astronomique du Sphinx sur le Jungfraujoch

Cette dernière se situe dans le col du Jungfraujoch en Suisse, à une altitude de 3571 mètres (11 716 pieds MSL).

La construction de cette gare fut à l’époque une prouesse d’ingénierie, mais coûta la vie à de nombreux travailleurs. On ne fait pas son chemin à coups de bâtons de dynamite à l’intérieur d’une chaîne de montagnes sans qu’à l’occasion la nitroglycérine impose un ordre du jour imprévu.

Le train ne peut donc accéder à cette gare qu’en circulant à l’intérieur des montagnes sur une pente abrupte nécessitant un mécanisme hydraulique pour tirer le train vers l’avant. Le touriste doit faire confiance aux ingénieurs et au soutien technique…

Pour me remémorer notre voyage dans cette région, j’ai pensé à effectuer un vol virtuel en hélicoptère en partant de Lauterbrunnen pour atterrir directement sur la plateforme de l’observatoire astronomique du Sphinx, cette attraction touristique du Jungfraujoch connu dans le monde entier. Heureusement pour moi, la compagnie Red Wing Simulations a récemment créé une scène virtuelle incluant ces deux magnifiques sites.

Lauterbrunnen, Suisse et le Bell 407 de Microsoft Flight Simulator.
Lauterbrunnen, Suisse et le Bell 407 de Microsoft Flight Simulator.

Les amateurs de simulation de vol auront intérêt à utiliser le Bell 407, car la limite d’utilisation du Guimbal Cabri G2 fourni par le simulateur de vol Microsoft plafonne à 13 000 pieds. Il est préférable de voler avec un appareil un peu plus puissant quand on manœuvre à cette altitude.

Au décollage de Lauterbrunnen, Suisse, avec Microsoft Flight Simulator 2020.
Au décollage de Lauterbrunnen, Suisse, avec Microsoft Flight Simulator 2020.

D’un paysage verdoyant en été on passe graduellement aux neiges éternelles des sommets les plus élevés dans le Valais.

En approche du Jungfraujoch, Suisse.
En approche du Jungfraujoch, Suisse.

Le paysage était spectaculaire en train et il l’est tout autant en vol virtuel. Un problème mécanique avec l’hélicoptère dans cet environnement constitué de falaises grandioses ne laisserait que peu de chances au pilote.

En approche de l'observatoire du Sphinx sur le Jungfraujoch, Suisse.
En approche de l’observatoire du Sphinx sur le Jungfraujoch, Suisse.

Nous voici en approche : il est possible d’atterrir sur la plateforme de l’observatoire du Sphinx, mais il faut se préparer pour les cisaillements de vent et les nuages imprévus à cette altitude tout en prenant soin lors de l’approche d’éviter de toucher avec la queue de l’hélicoptère le mât du drapeau et les clôtures de protection entourant la plateforme.

L'observatoire du Sphinx sur le Jungfraujoch avec le Bell 407 atterri sur la plateforme au moyen de Microsoft Flight Simulator.
L’observatoire du Sphinx sur le Jungfraujoch avec le Bell 407 atterri sur la plateforme au moyen de Microsoft Flight Simulator.

La compagnie Red Wing Simulations a fait un travail de conception remarquable pour cette scène virtuelle. Dans la photo ci-dessous, on peut même observer au bas de la falaise des skieurs qui se réchauffent avant d’entamer leur première descente.

Les skieurs virtuels de Red Wing Simulations à la base de l'observatoire du Jungfraujoch avec Microsoft Flight Simulator.
Les skieurs virtuels de Red Wing Simulations à la base de l’observatoire du Jungfraujoch avec Microsoft Flight Simulator.

Même si la scène virtuelle comprend autre chose que Lauterbrunnen et le Jungfraujoch, il demeure que le plaisir d’effectuer une approche réussie sur la plateforme du Sphinx vaut à lui seul le coût d’acquisition du logiciel.

L'observatoire astronomique du Sphinx sur le Jungfraujoch et l'hélicoptère virtuel avec Microsoft Flight Simulator.
L’observatoire astronomique du Sphinx sur le Jungfraujoch et l’hélicoptère virtuel avec Microsoft Flight Simulator.
L'observatoire du Sphinx sur le Jungfraujoch en virtuel selon Red Wing Simulations et Microsoft Flight Simulator 2020.
L’observatoire du Sphinx sur le Jungfraujoch en virtuel selon Red Wing Simulations et Microsoft Flight Simulator 2020.

Cliquez sur les liens pour d’autres vols virtuels exigeants ou des activités de simulation de vol sur mon blogue.

Catégories
Simulation de vol

Atterrissages courts en simulation de vol sous MSFS 2020.

En approche pour l'Île d'Orléans
En approche pour l’Île d’Orléans

Le vol d’aujourd’hui consiste en deux atterrissages courts virtuels en utilisant le simulateur de vol MSFS 2020 (ou comme certains le nomment, FS2020). Nous nous poserons sur l’Île d’Orléans et sur le Parc des Champs-de-Bataille à Québec, en plein centre-ville.

Tout d’abord, j’admets que les vitres du Cessna C-170B sont sales. Pour plus de réalisme, le concepteur Carenado a laissé un peu de saleté ici et là pour montrer l’usure de l’appareil vieux de plusieurs décennies.

La photo ci-dessus montre l’Île d’Orléans vue du Cessna. Comme il n’y a pas de piste d’atterrissage mais un club de golf dans le secteur, nous allons utiliser les allées dégagées pour poser l’appareil. S’il y a un golfeur sur le terrain, j’ouvrirai la fenêtre et crierai, comme c’est l’usage, « Fore »!! (Falling Object Returning to Earth).

En finale pour l'Île d'Orléans
En finale pour l’Île d’Orléans

Nous sommes confortablement installés en finale pour la petite portion de terrain dégagé droit devant. Avec 40 degrés de volet, la vitesse de décrochage est particulièrement basse et l’atterrissage devrait se faire sans trop de problèmes.

Sur l'Île d'Orléans prêt pour le décollage
Sur l’Île d’Orléans prêt pour le décollage

Bien que l’espace dégagé ne soit pas bien large, la longueur disponible s’est avérée suffisante pour l’atterrissage, le roulage au sol et la manœuvre pour virer l’avion de 180 degrés pour son décollage vers Québec.

Décollage de l'Île d'Orléans avec un Cessna 170B
Décollage de l’Île d’Orléans avec un Cessna 170B

De retour en vol, direction Québec. Le décollage sur terrain mou nécessite environ 20 degrés de volet.

En route vers la ville de Québec
En route vers la ville de Québec

La ville de Québec est en vue. Dans le Cessna C-170B que j’ai piloté en 1981 à travers le Canada jusqu’à Edmonton, Alberta, il n’y avait pas d’aide à la navigation moderne installée à bord comme c’est le cas dans la photo ci-dessus, où le GPS aide le pilote à trouver son chemin. Le vol avait été effectué au moyen de 14 cartes VFR, sans plus. (Si cela vous intéresse, cliquez pour en savoir plus sur les histoires vécues de pilotage).

Hôtel le Concorde et son restaurant tournant, visible à droite
Hôtel le Concorde et son restaurant tournant, visible à droite

Nous sommes au-dessus des Plaines d’Abraham. Sur la photo ci-dessus, à droite, vous apercevez l’Hôtel le Concorde et son restaurant tournant. Nous allons possiblement perturber l’atmosphère tranquille du repas au moment de notre passage…

Le MNBAQ et le Parc des Champs-de-Bataille en vue
Le MNBAQ et le Parc des Champs-de-Bataille en vue

Ci-dessus, droit devant, les bâtiments gris représentent une portion du Musée National des Beaux-Arts de Québec (MNBAQ). Un peu plus loin se trouve le terrain dégagé du Parc des Champs-de-Bataille. En 1928, un an après sa traversée de l’Atlantique en solitaire, Lindbergh y atterrit. Il transportait un sérum pour tenter de sauver la vie de son ami Floyd Bennett.

Pouvons-nous aujourd’hui nous poser sur le Parc des Champs-de-Bataille, en plein cœur de la ville de Québec? Bien sûr que non. Mais c’est la beauté de la simulation de vol; on fait ce que l’on veut!

Cessna 170B sur le Parc des Champs-de-Bataille à Québec
Cessna 170B sur le Parc des Champs-de-Bataille à Québec

Une fois posé, on laisse l’avion décélérer graduellement puis on le retourne de 180 degrés pour le prochain décollage. Quand les vents sont faibles, il n’est pas nécessaire de se préoccuper de la direction du décollage.

Vue aérienne du Parc des Champs-de-Bataille de Québec avec le Cessna 170B sous MSFS 2020
Vue aérienne du Parc des Champs-de-Bataille de Québec avec le Cessna 170B sous MSFS 2020

Ci-dessus, une vue aérienne du Parc des Champs-de-Bataille, avec le Cessna C-170B virtuel prêt pour redécoller.

Vue partielle de la Ville de Québec en simulation de vol avec MSFS 2020
Vue partielle de la Ville de Québec en simulation de vol avec MSFS 2020

Une dernière photo, cette fois-ci avec quelques bâtiments supplémentaires. Le réalisme de la scène virtuelle avec FS2020 est tout de même étonnant!

J’espère que vous avez apprécié ces deux petits vols. N’hésitez pas à tenter les mêmes expériences, si le cœur vous en dit!

Vous pouvez cliquer sur le lien suivant pour d’autres vol virtuels exigeants sur mon blogue.

Catégories
Simulation de vol

La piste de Bugalaga (WX53) en Indonésie avec MSFS 2020

La piste de Bugalaga en Indonésie photographiée par Nico Sanchez.
La piste de Bugalaga en Indonésie photographiée par Nico Sanchez.

On peut classer les décollages et atterrissages sur la piste de Bugalaga (WX53) en Indonésie comme étant dans la catégorie des vols virtuels exigeants. La piste ne présente pas un défi extraordinaire, du fait de ses dimensions tout de même confortables de 1478 pieds par 75 pieds de large. Mais l’approche requière tout de même plus de doigté qu’une approche standard, surtout avec les arbres en finale et la forte pente.

Le vol d’aujourd’hui avec le simulateur de vol MSFS 2020 consiste à décoller et atterrir sur cette piste en pente. Pour ajouter au plaisir, le vol doit se faire durant des conditions météorologiques adverses. En effet, les orages programmés dans la météo virtuelle compliquent un peu plus la tâche du pilote virtuel, car il doit composer avec des rafales de vent et de la turbulence mécanique. Et pour ajouter au plaisir, le Pilatus normalement utilisé est remplacé par un Cessna Grand Caravan 208B. La photo ci-dessus représente la piste de Bugalaga dans la réalité.

La piste en pente de Bugalaga (WX53) avec le simulateur de vol MSFS 2020.
La piste en pente de Bugalaga (WX53) avec le simulateur de vol MSFS 2020.

Ci-dessus, l’interprétation graphique en virtuel de cette piste située à 6233 pieds au-dessus du niveau de la mer (MSL) avec le Cessna prêt à décoller. Asobo (Microsoft) a fait du bon boulot.

Cessna Grand Caravan 208B prêt pour le départ de la piste en pente de Bugalaga avec MSFS 2020
Cessna Grand Caravan 208B prêt pour le départ de la piste en pente de Bugalaga avec MSFS 2020

La visibilité pourrait être meilleure, mais elle n’empêche pas le décollage de l’aéronef sur la piste 06.

Cessna Grand Caravan 208B au décollage de Bugalaga (WX53) avec MSFS 2020.
Cessna Grand Caravan 208B au décollage de Bugalaga (WX53) avec MSFS 2020.

Comme vous pouvez le constater, la marge d’erreur est mince pour cet aéronef moins performant que le Pilatus habituellement utilisé dans la réalité.

Orage en approche pour Bugalaga en simulation de vol.
Orage en approche pour Bugalaga en simulation de vol.

Immédiatement après le décollage, la préparation commence pour la procédure en éloignement et le virage à 180 degrés qui remettra l’aéronef en finale pour la piste 24. Les montagnes environnantes présentes requièrent toute l’attention du pilote.

Cessna Grand Caravan 208B en approche pour Bugalaga en simulation de vol.
Cessna Grand Caravan 208B en approche pour Bugalaga en simulation de vol.

Une visibilité acceptable mais de forts vents caractérisent l’approche vers Bugalaga.

La piste en pente virtuelle de Bugalaga est visible dans les montagnes.
La piste en pente virtuelle de Bugalaga est visible dans les montagnes.

La piste 24 devient progressivement visible dans les montagnes.

En finale pour Bugalaga (WX53) avec le simulateur de vol MSFS 2020.
En finale pour Bugalaga (WX53) avec le simulateur de vol MSFS 2020.

La vitesse avec volets sortis se situe autour de 82 nœuds.

Atterrissage sur la piste en pente de Bugalaga (WX53) avec MSFS 2020.
Atterrissage sur la piste en pente de Bugalaga (WX53) avec MSFS 2020.

Le Cessna Grand Caravan C208B s’apprête à toucher le sol. On peut voir la forte pente de la piste, qui s’accentue encore davantage vers la fin du trajet.

Cessna Grand Caravan 208B sur la piste de Bugalaga en Indonésie.
Cessna Grand Caravan 208B sur la piste de Bugalaga en Indonésie.

Une fois atterri, le pilote virtuel doit conserver suffisamment de vitesse pour gravir la butte en fin de piste.

Cessna Grand Caravan 208B après un atterrissage à Bugalaga en simulation de vol.
Cessna Grand Caravan 208B après un atterrissage à Bugalaga en simulation de vol.

Une dernière capture d’écran montrant l’aéronef ayant franchi la dernière butte à la fin de la piste 24. Le vol est de courte durée, mais nécessite toute votre attention. Bonne chance à ceux qui tenteront l’expérience!

Cliquez sur le lien pour d’autres vols virtuels exigeants sur mon blogue.

Catégories
Simulation de vol

Vol virtuel exigeant en Idaho utilisant MSFS 2020.

Carte MSFS 2020 pour un vol virtuel de 3U2 vers C53 aux États-Unis.
Carte MSFS 2020 pour un vol virtuel de 3U2 vers C53 aux États-Unis.

Le vol virtuel s’effectue entre l’aéroport de Johnson Creek (3U2) et la piste de Lower Loon Creek (C53) aux États-Unis, en utilisant le simulateur de vol MSFS 2020. La carte du logiciel montre le type d’avion choisi, un CubCrafters X Cub sur flotteurs, de même que la trajectoire au-dessus des montagnes de l’Idaho.

L’idée d’utiliser un avion amphibie pour ce vol est un peu saugrenue, mais le but est de compliquer un peu la tâche du pilote en rajoutant du poids à l’appareil.

L'aéroport de Johnson Creek (3U2) avec MSFS 2020.
L’aéroport de Johnson Creek (3U2) avec MSFS 2020.

L’aéroport de Johnson Creek (3U2) est une création de la compagnie Creative Mesh. Il est charmant, avec ici et là des tentes plantées près des avions. La piste est longue de 3480 pieds par 150 de large. Elle est orientée sur un axe 17/35 et tout de même assez élevée à 4960 pieds au-dessus du niveau de la mer (MSL).

CubCrafters X Cub amphibie au décollage de l'aéroport virtuel de Johnson Creek (3U2) avec le simulateur de vol MSFS 2020.
CubCrafters X Cub amphibie au décollage de l’aéroport virtuel de Johnson Creek (3U2) avec le simulateur de vol MSFS 2020.

Étant donné l’altitude de départ, il ne faut pas oublier d’ajuster le mélange air/essence pour ne pas perdre de puissance au décollage, d’autant plus qu’en bout de piste se trouve une montagne et que les flotteurs augmentent le poids de ce petit appareil. Le fait que le vol s’effectue en été et à une altitude un peu plus élevée que la normale constitue un dernier obstacle à la performance de l’avion puisque l’air est moins dense.

Décollage de l'aéroport virtuel 3U2 Johnson Creek avec le simulateur de vol MSFS 2020.
Décollage de l’aéroport virtuel 3U2 Johnson Creek avec le simulateur de vol MSFS 2020.

Les montagnes à proximité de la piste présentent un obstacle important. Le pilote virtuel doit utiliser le meilleur angle de montée possible sans se préoccuper de la route à suivre conseillée par le GPS. On conserve les volets légèrement sortis pendant la montée initiale.

Survol des montagnes de l'Idaho en simulation de vol sous MSFS 2020.
Survol des montagnes de l’Idaho en simulation de vol sous MSFS 2020.

Une fois à une altitude sécuritaire et de nouveau sur la route suggérée par le GPS, on jouit davantage de la vue qu’offrent les spectaculaires montagnes de l’Idaho. Durant toute la montée, il aura fallu ajuster le mélange air-essence et l’altimètre (« B » sur MSFS 2020).

Un CubCrafters X Cub sur flotteurs survole les montagnes de l'Idaho en simulation de vol sous MSFS 2020.
Un CubCrafters X Cub sur flotteurs survole les montagnes de l’Idaho en simulation de vol sous MSFS 2020.

Une altitude de presque 10,000 pieds ASL permet de survoler les montagnes sans risque de collision.

Descente dans la vallée vers la piste de Marble Creek ID8 en simulation de vol.
Descente dans la vallée vers la piste de Marble Creek ID8 en simulation de vol.

Au moment opportun, lorsque les petits aéroports environnants et la rivière apparaissent sur le GPS, on quitte notre route jusqu’ici en ligne droite et on s’enligne dans la vallée pour survoler la rivière jusqu’à notre destination. On évite ainsi les montagnes environnantes. Dans la photo ci-dessus, la descente a déjà commencé, avec forcément un nouveau réglage graduel du mélange air-essence.

Survol de l'aéroport virtuel de Marble Creek (ID8) en Idaho avec le simulateur de vol MSFS 2020.
Survol de l’aéroport virtuel de Marble Creek (ID8) en Idaho avec le simulateur de vol MSFS 2020.

On survole un premier petit aéroport. La photo ci-dessus montre les avions stationnés sur la piste du Marble Creek airport (ID8), dont la dimension est de 1160 x 20. Pour ceux qui seraient intéressés à y tenter un atterrissage, l’orientation de la piste est 03/21 et l’altitude de 4662 pieds MSL.

Survol de l'aéroport Thomas Creek (2U8) en Idaho avec le simulateur de vol MSFS 2020.
Survol de l’aéroport Thomas Creek (2U8) en Idaho avec le simulateur de vol MSFS 2020.

En route vers notre destination finale, on survole également à basse altitude l’aéroport de Thomas Creek (2U8). Aéroport est un bien grand mot…

Survol de la rivière vers la piste de Lower Loon Creek avec le simulateur de vol MSFS 2020.
Survol de la rivière vers la piste de Lower Loon Creek avec le simulateur de vol MSFS 2020.

Les montagnes de chaque côté de la rivière exigent une attention soutenue, car les faibles performances d’un petit avion équipé de flotteurs ne permettent pas de corriger facilement des erreurs de navigation.

Au moment où la piste deviendra soudainement visible, l’avion ne sera pas dans l’axe mais à 90 degrés de la trajectoire idéale. Il faudra rapidement virer à gauche dans la vallée, faire un virage de 180 degrés assez serré vers la droite pour éviter les montagnes et se remettre dans l’axe pour atterrir. Ce n’est qu’à ce moment que l’on sortira le train d’atterrissage.

En finale pour Lower Loon Creek avec le simulateur de vol.
En finale pour Lower Loon Creek avec le simulateur de vol.

En finale pour la piste en terre et gazon de Lower Loon Creek (C53). Elle se situe à 4084 pieds MSL et n’a que 1200 pieds de long par 25 pieds de large. À noter que l’approche doit s’effectuer sur la piste 16 lorsque possible.

Un avion virtuel CubCrafters X Cub amphibie sur la piste de Lower Loon Creek C53 avec MSFS 2020.
Un avion virtuel CubCrafters X Cub amphibie sur la piste de Lower Loon Creek C53 avec MSFS 2020.

Comme toujours, un avion stabilisé en finale facilite l’atterrissage, peu importe les conditions.

CubCrafters X Cub amphibie stationné à l'aéroport virtuel de Lower Loon Creek C53 en simulation de vol.
CubCrafters X Cub amphibie stationné à l’aéroport virtuel de Lower Loon Creek C53 en simulation de vol.

On stationne l’appareil et profite de quelques moments de repos. Aujourd’hui, il n’y a personne d’autres ici. Mais ce n’est pas toujours le cas dans la vraie vie, comme en témoigne ce vidéo d’un atterrissage à Lower Loon Creek.

Cliquez sur le lien pour d’autres vols virtuels exigeants sur mon blogue.

Catégories
Simulation de vol

Elk River (NC06) vers Mountain Air County Club (2NC0) avec MSFS 2020.

Prêt pour le départ à l'aéroport virtuel de Elk River (NC06) conçu par Cloud Studio.
Prêt pour le départ à l’aéroport virtuel de Elk River (NC06) conçu par Cloud Studio.

Le vol virtuel d’aujourd’hui, d’une durée de vingt minutes, s’effectue en utilisant le logiciel de simulation de vol de Microsoft MSFS 2020. L’aéroport virtuel de Elk River (NC06) aux États-Unis, modélisé ici par la compagnie Pilot’s, se situe à environ 3468 pieds (ft) au-dessus du niveau de la mer (MSL). Sa piste 12/30 en pente accommode de nombreux types d’aéronefs puisque ses dimensions font tout de même 4600 pieds de long par 75 pieds de large. Un club de golf se trouve à proximité des installations aéroportuaires.

La piste en pente de l'aéroport de Elk River (NC06) avec le simulateur de vol MSFS2020.
La piste en pente de l’aéroport de Elk River (NC06) avec le simulateur de vol MSFS2020.

En regardant au loin, on réalise que l’extrémité de la piste 30 monte rapidement. Le voyage vers l’aéroport de Mountain Air County Club (2NC0), modélisé par Cloud Studio, s’effectue avec un monomoteur de type Cubcrafters NX Cub.

En route vers l'aéroport Mountain Air County Club (2NC0) depuis Elk River (NC06) avec MSFS 2020.
En route vers l’aéroport Mountain Air County Club (2NC0) depuis Elk River (NC06) avec MSFS 2020.

En vol direct avec le GPS, le pilote virtuel monte autour de 7000 pieds msl pour éviter les montagnes environnantes. Il importe donc d’ajuster le mélange air/essence (mixture) en montée et en descente pour la destination. On règle également l’altimètre (la touche « B » pour plus de rapidité) lorsque l’on s’éloigne du point de départ. Près des sommets, on expérimente de la turbulence mécanique, ce qui est normal.

Vue aérienne de l'aéroport de Mountain Air County Club (2NC0) conçu par Pilot's.
Vue aérienne de l’aéroport de Mountain Air County Club (2NC0) conçu par Pilot’s.

La photo ci-dessus montre l’aéroport virtuel de Mountain Air County Club (2NC0) avec le simulateur de vol MSFS 2020. Là également se trouve une piste en pente. Elle est de 2900 pieds de long et seulement 50 pieds de large. Un terrain de golf entoure cet aéroport situé à 4432 pieds msl. Les vents étant légers, l’approche se fera sur la piste 14.

En finale pour la piste en pente de l'aéroport Mountain Air County Club (2NC0) en utilisant MSFS 2020.
En finale pour la piste en pente de l’aéroport Mountain Air County Club (2NC0) en utilisant MSFS 2020.

En approche finale, on aperçoit facilement l’angle en montée que fait cette piste d’atterrissage un peu plus endommagée que celle de Elk River.

Une vue de la falaise au seuil de la piste 32 de l'aéroport Mountain Air County Club (2NC0) conçu par Pilot's pour MSFS 2020.
Une vue de la falaise au seuil de la piste 32 de l’aéroport Mountain Air County Club (2NC0) conçu par Pilot’s pour MSFS 2020.

En roulant  jusqu’à la fin de la piste 14, on note la falaise qui attend le pilote n’ayant pas bien préparé son atterrissage. Pas de pardon!

Vue en hauteur de l'aéroport Mountain Air County Club (2NC0) avec le simulateur de vol MSFS 2020.
Vue en hauteur de l’aéroport Mountain Air County Club (2NC0) avec le simulateur de vol MSFS 2020.

Une vue en hauteur montre le seuil de la piste 14 et les bâtiments associés au club de golf. Quelques pilotes amateurs de golf ont déjà stationné leur appareil à gauche de la piste 14. Pour cette capture d’écran, j’ai utilisé l’excellent drone de X-BOX.

Bâtiments et fleurs de l'aéroport Mountain Air County Club (2NC0) conçu par Pilot's pour MSFS 2020.
Bâtiments et fleurs de l’aéroport Mountain Air County Club (2NC0) conçu par Pilot’s pour MSFS 2020.

Une dernière photo montre les bâtiments et les fleurs associés au club de golf. On entend sans peine les enregistrements d’oiseaux qui agrémentent la scène. Les amateurs de simulation de vol désirant répéter l’expérience ont intérêt à faire ce vol en VFR pour avoir les sommets des montagnes à l’œil lors de l’approche.

Cliquez sur le lien pour d’autres vols virtuels exigeants sous MSFS 2020 et FSX sur mon blogue.

Catégories
Simulation de vol

La courte piste en montagne de Launumu en Papouasie Nouvelle-Guinée

Un DHC-3 de la compagnie Air Saguenay a réussi  à faire le voyage entre le Québec et Kokoda en Papouasie Nouvelle-Guinée. Il travaillera dans le secteur, sur les différentes pistes en montagne, durant plusieurs mois.

Le Otter d'Air Saguenay circule pour la piste de Kokoda en direction de Launumu en Papouasie Nouvelle-Guinée.
Le Otter d’Air Saguenay circule pour la piste de Kokoda en direction de Launumu en Papouasie Nouvelle-Guinée.

Aujourd’hui, le Otter se dirige vers Launumu, une piste en montagne dont l’élévation est de 5082 pieds asl et qui a une longueur de 1200 pieds.

Le Otter d'Air Saguenay au départ de Kokoda.
Le Otter d’Air Saguenay au départ de Kokoda.

Il faut surveiller les oiseaux pour éviter les collisions en vol.

Avion Otter et oiseaux.
Avion Otter et oiseaux.

Une bonne façon d’atteindre Launumu est de suivre le sentier de Kokoda.

Le Otter dans les montagnes de la Nouvelle-Guinée, suivant la piste de Kokoda.
Le Otter dans les montagnes de la Nouvelle-Guinée, suivant la piste de Kokoda.

Si le mélange air/essence n’est pas bien ajusté, l’aéronef perdra de la puissance en tentant de franchir certaines montagnes dont le sommet culmine autour de 7500 pieds.

Tableau de bord du Otter avec le mélange air/essence ajusté.
Tableau de bord du Otter avec le mélange air/essence ajusté.

Tout pilote atterrissant ou quittant Launumu doit composer avec une haute altitude densité. Ce n’est pas seulement dû à l’élévation de la piste, mais aussi à la présence d’air chaud et humide dans la région. En conséquence, une vitesse un peu plus élevée sera nécessaire au moment de l’arrivée et du départ. La piste de Launumu est en vue.

La piste de Launumu est en vue.
La piste de Launumu est en vue.

Lorsqu’un pilote atterri en direction sud-ouest sur la piste de Launumu, en provenance de Kokoda, il doit plonger dans la vallée pour perdre de l’altitude. Cela aura pour conséquence d’accroître la vitesse de l’appareil.

Si la vitesse n’est pas promptement corrigée, l’approche pour la piste de Launumu se fera à une vitesse trop élevée. Toute vitesse en haut de 60 nœuds forcera le pilote à effectuer une approche manquée (à moins que vous soyez prêt à mourir virtuellement quelques fois en tentant de forcer l’approche).

Perte d'altitude en respectant la limite des volets.
Perte d’altitude en respectant la limite des volets.

Donc, une fois les plus hautes montagnes franchies, une bonne façon de perdre de l’altitude sans gagner de vitesse est d’utiliser les volets et de faire un virage serré de 360 degrés tout en descendant. De cette façon, le pilote terminera le virage en ligne avec la piste et à la vitesse désirée, qui se situe autour de 50 nœuds.

Virage en descente dans la vallée pour une approche vers Launumu.
Virage en descente dans la vallée pour une approche vers Launumu.

Le Otter plane longuement grâce à ses immenses ailes.

Le Otter d'Air Saguenay en approche pour la courte piste de Launumu en Papouasie Nouvelle-Guinée.
Le Otter d’Air Saguenay en approche pour la courte piste de Launumu en Papouasie Nouvelle-Guinée.

En finale pour la piste de Launumu, le pilote devra composer avec quelques arbustes en finale. Il n’est pas inhabituel pour un Otter ou un Beaver de compléter une approche difficile avec quelques plantes vertes enroulées autour du train d’atterrissage.

Le Otter d'Air Saguenay en finale pour la piste en montagne de Launumu.
Le Otter d’Air Saguenay en finale pour la piste en montagne de Launumu.
Arrivée d'un avion de type Otter sur la piste en altitude de Launumu.
Arrivée d’un avion de type Otter sur la piste en altitude de Launumu.

Launumu offre une surprise aux nouveaux arrivants. Si le pilote atterri en direction sud-ouest, comme cela est fait ici, et qu’il n’immobilise pas l’avion en-dedans d’approximativement 600 pieds, l’aéronef recommence à accélérer à cause de la pente prononcée dans la deuxième partie de la piste. Cette pente mène à une falaise. En cas d’approche manquée, le pilote peut utiliser la pente descendante pour plonger dans la vallée en fin de piste et ainsi accroître la vitesse de l’appareil et débuter une nouvelle approche.

Maintenant que le travail difficile est fait, il suffit d’attendre les passagers et la cargaison et de planifier le prochain vol!

Un aéronef Otter remonte la piste à rebours après un atterrissage sur la piste en pente de Launumu.
Un aéronef Otter remonte la piste à rebours après un atterrissage sur la piste en pente de Launumu.
Avion de type Otter stationné sur la piste de Launumu en Papouasie Nouvelle-Guinée.
Avion de type Otter stationné sur la piste de Launumu en Papouasie Nouvelle-Guinée.

La scène virtuelle a été conçue par Ken Hall et Tim Harris.

Les paysages et les nuages virtuels ont nécessité les programmes virtuels tels que REX, REX Texture Direct, Cumulus X, FTX Global, FTX Global Vector et Pilot’s FS Global 2010.

Cliquez sur le lien pour d’autres vols virtuels exigeants sur mon blogue.

Catégories
Simulation de vol

Vols virtuels exigeants : l’interception d’aéronefs en simulation de vol

Un défi intéressant pour les amateurs de simulation de vol consiste à rechercher puis intercepter les aéronefs virtuels qui se déplacent de façon autonome, c’est-à-dire ceux dont on ne connaît pas le plan de vol.

Le degré de difficulté varie en fonction de l’aéronef qui est intercepté, et de l’intercepteur.

La capture d’écran ci-dessous montre une interception relativement simple car il est n’est pas trop difficile pour le AV-8B Harrier de modifier sa vitesse pour l’ajuster à la vitesse de croisière relativement élevée du Beechcraft B350.

Avion virtuel Beechcraft B350 intercepté par un AV-8B Harrier.
Avion virtuel Beechcraft B350 intercepté par un AV-8B Harrier.

Pour compliquer un peu la chose, l’amateur de simulation de vol pourra tenter l’interception en vol d’un aéronef relativement lent au moyen d’un jet militaire.

Un vol virtuel exigeant consistera alors à utiliser, par exemple, un CF-18 en tentant d’adapter sa vitesse et son altitude à celles de l’aéronef intercepté et de voler à ses côtés pendant une minute. Pour se faire, il faudra nécessairement placer le CF-18 en configuration de vol lent, avec train d’atterrissage sorti.

Avion virtuel Cessna C208 intercepté par un CF-18
Avion virtuel Cessna C208 intercepté par un CF-18

Ce genre d’interception est parfois effectué dans la vie réelle lorsqu’un avion s’engage par mégarde dans une zone interdite aux aéronefs civils : un jet militaire doit alors le prendre en chasse, puis s’en approcher et lui faire des signaux lui ordonnant de le suivre jusqu’à la base militaire la plus proche.

Une fois établi en vol, n’oubliez pas de capturer l’expérience en photo! Bonne chance et bon vol!

Cliquez sur le lien pour d’autres vols virtuels exigeants sur mon blogue.