Categories
Flight Simulation

Around the world in flight simulation (2)

Climbing from Iqaluit (CYFB) to Kangerlussuaq (BGSF)
Climbing from Iqaluit (CYFB) to Kangerlussuaq (BGSF)

For this second leg of the round-the-world flight simulation, the aircraft departs from Iqaluit (CYFB) in appalling weather conditions, but soon find itself above cloud and approaching an area of high pressure. The sky becomes increasingly clear as I approach runway 09 Kangerlussuaq (BGSF) in Greenland.

Virtual flights CYFB BGSF BIIS
Virtual flights CYFB BGSF BIIS

The map shows the planned itinerary: departure from Iqaluit (CYFB), stopover in Kangerlussuaq (BGSF) and arrival at destination in Iceland, at Isafjordur airport (BIIS).

Cessna Citation Longitude on the final approach for the Kangerlussuaq virtual airport (BGSF)
Cessna Citation Longitude on the final approach for the Kangerlussuaq virtual airport (BGSF)

Above, the approach to runway 09. You really need to be well prepared for a destination like BGSF. If the pilot arrives after the tower is closed, the fines are very steep. You can generally expect a little mechanical turbulence on the approach to Runway 09, as the mountains on either side of the aircraft change the airflow.

When I worked at the Iqaluit Flight Service Station (CYFB), many pilots would come up to the tower to plan their flight to BGSF. The most frequent problem was the closing time of the control tower in Kangerlussuaq. They knew that a hefty fine awaited them if they arrived late, often due to stronger-than-expected winds or a departure time that was too tight from Iqaluit. Most of the time, they chose to sleep in Iqaluit and leave the next day, rather than force the issue and end up with a $1500.00 bill to pay.

We also had pilots ferrying single-engine planes over the ocean from Europe to America. In this case, the weather had to be excellent, and the captain had to have the necessary equipment on board to attempt (and I do mean attempt) to survive in the ocean in the event of engine failure.

Cessna Longitude parked at Kangerlussuaq (BGSF)
Cessna Longitude parked at Kangerlussuaq (BGSF)

Above, a partial view of Kangerlussuaq’s virtual airport (BGSF), with the Cessna Citation Longitude at a standstill. On the other side of the runway (invisible here), the airport receives military aircraft.

Climbing from (BGSF) Kangerlussuaq to (BIIS) Isafjordur
Climbing from (BGSF) Kangerlussuaq to (BIIS) Isafjordur

The next day, after a stopover in Kangerlussuaq, it’s time to continue on to Isafjordur. Take-off is on runway 27. The pitot tube heating system and icing protection are activated before entering the cloud layer.

Airborne from the Kangerlussuaq (BGSF) airport
Airborne from the Kangerlussuaq (BGSF) airport

Flying in real weather makes for unexpected screenshots.

The Cessna Longitude arrives over Iceland in flight simulation
The Cessna Longitude arrives over Iceland in flight simulation

Above, the relief of Iceland shortly before arrival at Isafjordur airport (BIIS). As expected, the sky is clear.

Approaching Isafjordur (BIIS) with the Asobo Cessna Citation Longitude
Approaching Isafjordur (BIIS) with the Asobo Cessna Citation Longitude

The approach to Isafjordur is demanding, especially when flying a jet like the Cessna Citation Longitude. You have to save extra speed in the sharp left turn to avoid stalling. I made the turn downhill at 160 knots to get to the runway threshold at the right height. Towards the end of the approach, as the angle of the turn decreases, you immediately reduce speed to around 135 knots.

The Cessna Citation Longitude exits the runway at the Isafjordur virtual airport (BIIS)
The Cessna Citation Longitude exits the runway at the Isafjordur virtual airport (BIIS)

Contrary to real life, it is difficult to have a constant view on a runway when doing a virtual approach in a steep turn. A flight simmer would need 3D glasses to quickly look at the runway and then check the instruments. After two unsuccessful attempts where I found myself a little too high above the runway threshold, I nonetheless managed to land. The instrument panel indicated, however, that the brakes worked pretty hard to slow down the plane, which didn’t really surprise me. There are more relaxing approaches…

The next leg on this trip around the world will be a departure from Isafjordur to Vagar (EKVG) in the Feroe Islands.

Click on the link for more flights around the world in flight simulation on my blog.

Categories
Flight Simulation

Around the world in flight simulation (1)

F-14 Tomcat at work over the sea
F-14 Tomcat at work over the sea

The flight simulation with Microsoft Flight Simulator lets you fly over the planet like never before from the comfort of your own home. As airports around the world transmit weather observations at all times, it’s possible to import this data into the flight simulator and fly virtually in the real weather conditions reported around the globe.

This data enhances the feeling of reality for the virtual pilot, but at the same time complicates his task, as he has to take into account the presence of thunderstorms and icing, surface and upper-level winds, changes in cloud cover, visibility, pressure, and so on.

Today’s virtual pilot must also anticipate that failures of all kinds may affect the flight, especially if he or she owns a high-quality virtual aircraft. The engine(s) may fail, a structural problem may affect the aircraft’s controls and navigation equipment may cease to function. Good planning is essential, just as in real life. And since the brain doesn’t differentiate too much between the real and the virtual, there’s plenty of fun to be had.

So, I’ve decided to fly around the world as a millionaire, at my own pace, i.e., using the types of aircraft that tempt me, and flying the routes that are of particular interest. All of this will be done in real weather, with all its joys and obstacles. I’ll be publishing one of these routes on my blog from time to time.

The initial route departs from Quebec’s Jean-Lesage airport (CYQB), passes through Goose Bay (CYYR), in the Canadian province of Newfoundland and Labrador, heads north to Kuujjuaq and ends in Iqaluit (CYFB).

Virtual Flight 2 will present a few photos of the Atlantic crossing from Iqaluit to Kangerlussuaq (BGSF) in Greenland, to Isafjordur (BIIS) in Iceland .

Isafjordur airport has a challenging approach. I don’t know if the Cessna Citation Longitude will be able to land there in one piece, but I intend to give it a try.

Virtual flight 1.

Virtual flights CYQB CYYR CYVP CYFB
Virtual flights CYQB CYYR CYVP CYFB
Enroute from Quebec City (CYQB) to Goose Bay (CYYR)
Enroute from Quebec City (CYQB) to Goose Bay (CYYR)

Above, the setting sun illuminates the clouds and the Cessna Citation Longitude en route from Quebec City to Goose Bay. At high altitude, the pilot sets the altimeter to the standard atmospheric pressure of 29.92 inches of mercury. Since all the other pilots are doing the same, a safe separation between the aircraft is ensured.

Approaching the Kuujjuaq airport (CYVP) in Quebec.
Approaching the Kuujjuaq airport (CYVP) in Quebec.

The next day, the aircraft is seen approaching Kuujjuaq (CYVP) in Nunavik. The altimeter is set to the airport’s atmospheric pressure to reflect the correct height of the runways in relation to the aircraft. Near the airport, the autopilot is disconnected, and the approach is made manually and visually. The desired speed is around 135 knots for the final.

Departing Kuujjuaq airport (CYVP) with the Cessna Citation Longitude
Departing Kuujjuaq airport (CYVP) with the Cessna Citation Longitude

Above, the jet takes off from Kuujjuaq bound for Iqaluit (CYFB) on Baffin Island in Nunavut.

Enroute to Iqaluit airport (CYFB)
Enroute to Iqaluit airport (CYFB)

The setting sun illuminates the aircraft’s windows. The approach to Iqaluit has begun. The descent is gradual, so as not to cause discomfort to the virtual passengers…

On final for runway 34 of the Iqaluit airport (CYFB)
On final for runway 34 of the Iqaluit airport (CYFB)

Above, the aircraft is on final for runway 34 at Iqaluit (CYFB).

The yellow Iqaluit flight service station (FSS) in Iqaluit (CYFB)
The yellow Iqaluit flight service station (FSS) in Iqaluit (CYFB)

The first leg of our virtual flight around the world ends in Iqaluit, the airport where I worked for two and a half years as Flight Service Specialist (FSS) in the yellow tower on the left of the photo.

Flight service specialists at work at the Iqaluit flight service station in 1989
Flight service specialists at work at the Iqaluit flight service station in 1989

Above, a photo of the interior of the Flight Service Station at the time. One FSS worked on arrivals and departures at the airport, while the other handled transatlantic flights between Europe and mainly the western USA.

Click on the link for more flights around the world in flight simulation on my blog.

Categories
Flight Simulation

A twin-engine BE-58 lands on an aircraft carrier.

A twin engine Baron Be-58 on approach for the aircraft carrier Gerald R. Ford
A twin engine Baron Be-58 on approach for the aircraft carrier Gerald R. Ford

Here’s a virtual flight made on a flight simulator using Microsoft Flight Simulator software. A Beech Baron BE-58 left Key West Airport, Florida (KEYW) a few minutes ago, heading for the CVN78 USS Gerald R. Ford aircraft carrier.   

In the real world, this just isn’t done. But in flight simulation, anything goes. Above, the aircraft completes the downwind leg of its approach to the carrier.

On stabilized final with full flaps and landing gear down, the focus is on the approach angle and stall speed, which stands at 73 knots.

Beech Baron Be-58 on final for the Gerarld R. Ford aircraft carrier
Beech Baron Be-58 on final for the Gerarld R. Ford aircraft carrier

You can’t rely on a cable to stop the plane, so you need the lowest possible speed and good brakes to land it on the 333-meter bridge. Below, the Beech attracts a little curiosity as it circulates to find temporary parking.

Taxiing to park the BE-58 on the aircraft carrier
Taxiing to park the BE-58 on the aircraft carrier

The virtual pilot then parks the aircraft for the next day.

Parked for the night on the CVN78 Gerald R. Ford
Parked for the night on the CVN78 Gerald R. Ford

The next two images show the aircraft carrier facing a storm the following evening, with winds blowing at 35 knots during a thunderstorm. On deck, the first aircraft on the left is our Baron Be-58, holding its own. If the storm doesn’t blow it overboard, the military will soon!

The aircraft carrier CVN 78 Gerald R. Ford in a storm
The aircraft carrier CVN 78 Gerald R. Ford in a storm
The aircraft carrier Gerald R. Ford near Key West
The aircraft carrier Gerald R. Ford near Key West

Click on the link for other challenging virtual flights on my blog.

Categories
Flight Simulation

The Jungfraujoch in flight simulation.

On the train heading for the Jungfraujoch, Switzerland 2013.
On the train heading for the Jungfraujoch, Switzerland 2013.

Ten years ago this year, we took the train to the Jungfraujoch Top of Europe station.

Sphinx astronomical observatory on the Jungfraujoch in Switzerland.
Sphinx astronomical observatory on the Jungfraujoch in Switzerland.

The latter is located in the Jungfraujoch pass in Switzerland, at an altitude of 3571 meters (11,716 feet MSL).

The construction of this station was a feat of engineering at the time, but cost the lives of many workers. One does not make one’s way through a mountain range with sticks of dynamite without the occasional unforeseen agenda imposed by nitroglycerine.

The train can therefore only reach this station by traveling inside the mountains on a steep slope requiring a hydraulic mechanism to pull the train forward. The tourist must trust the engineers and the technical support…

To remind myself of our trip to this region, I thought of taking a virtual helicopter flight from Lauterbrunnen to land directly on the platform of the Sphinx astronomical observatory, this world famous tourist attraction of the Jungfraujoch. Fortunately for me, the company Red Wing Simulations recently created a virtual scene including these two magnificent sites.

Lauterbrunnen, Switzerland and the Microsoft Flight Simulator Bell 407.
Lauterbrunnen, Switzerland and the Microsoft Flight Simulator Bell 407.

Flight simulation enthusiasts will be well advised to use the Bell 407, as the operating limit of the Guimbal Cabri G2  provided by the Microsoft flight simulator is capped at 13,000 feet. It is best to fly with a slightly more powerful aircraft when maneuvering at this altitude.

Airborne from Lauterbrunnen, Switzerland, with Microsoft Flight Simulator 2020.
Airborne from Lauterbrunnen, Switzerland, with Microsoft Flight Simulator 2020.

From a green landscape in the summer one gradually flies towards the eternal snow of the highest peaks in the Valais.

Getting closer to the Jungfraujoch, Switzerland.
Getting closer to the Jungfraujoch, Switzerland.

The scenery was spectacular on the train and it is just as spectacular in virtual flight. A mechanical problem with the helicopter in this environment of grandiose cliffs would leave little chance for the pilot.

Approaching the Sphinx Observatory on the Jungfraujoch, Switzerland.
Approaching the Sphinx Observatory on the Jungfraujoch, Switzerland.

Here we are on approach: it is possible to land on the platform of the Sphinx observatory, but the pilot needs to be prepared for wind shear and unforeseen clouds at this altitude while taking care during the approach to avoid touching the flagpole and the protective fences surrounding the platform.

The Sphinx observatory on the Jungfraujoch with the Bell 407 helicopter on the platform using Microsoft Flight Simulator.
The Sphinx observatory on the Jungfraujoch with the Bell 407 helicopter on the platform using Microsoft Flight Simulator.

The Red Wing Simulations company has done an outstanding job designing this virtual scenery. In the photo below, you can even see skiers at the bottom of the cliff warming up before their first run.

Red Wing Simulations skiers at the base of the Jungfraujoch observatory on Microsoft Flight Simulator.
Red Wing Simulations skiers at the base of the Jungfraujoch observatory on Microsoft Flight Simulator.

Even if the virtual scene includes something other than Lauterbrunnen and the Jungfraujoch, the pleasure of making a successful approach on the Sphinx platform alone is worth the cost of acquiring the software.

The Sphinx observatory on the Jungfraujoch and the helicopter on the platform using Microsoft Flight Simulator
The Sphinx observatory on the Jungfraujoch and the helicopter on the platform using Microsoft Flight Simulator
Microsoft Flight Simulator and Red Wing Simulations representation of the Jungfraujoch Observatory platform.
Microsoft Flight Simulator and Red Wing Simulations representation of the Jungfraujoch Observatory platform.

Click on the links for more challenging virtual flights or flight simulation information on my blog.

Categories
Flight Simulation

Short Landings in Flight Simulation with MSFS 2020

On approach for Île d'Orlans.
On approach for Île d’Orlans.

Today’s flight consists of two virtual short landings using the MSFS 2020 flight simulator (or as some call it, FS2020). We will be landing on Île d’Orlans and on the Battlefields Park.

First of all, I admit that the Cessna 170B’s windows are dirty. For realism, the designer Carenado left a little dirt here and there to show the wear and tear of this very old aircraft.

The picture above shows Île d’Orlans as seen from the Cessna. Since there is no landing strip but a golf club in the area, we will use the open fairways to land the aircraft. If there is a golfer on the course, I will open the window and yell, as is customary, “Fore!” (Falling Object Returning to Earth).

On final for Île d'Orlans
On final for Île d’Orlans

We are established on final for the small portion of open ground ahead. With 40 degrees of flaps, the stall speed is particularly low and the landing should not be too difficult.

On Île d'Orlans ready for take-off.
On Île d’Orlans ready for take-off.

Although the available strip was not very wide, it was long enough for the landing, the taxiing and the maneuvering to turn the aircraft 180 degrees for its take-off to Quebec City.

Airborne from Île d'Orlans with a Cessna 170B
Airborne from Île d’Orlans with a Cessna 170B

Back in the air, direction Quebec City. The take-off on soft ground requires about 20 degrees of flaps.

Enroute towards Quebec City.
Enroute towards Quebec City.

Quebec City is in sight. In the Cessna C-170B I flew in 1981 across Canada from St-Jean-sur-Richelieu to Edmonton, Alberta, there was no modern navigation aid installed on board as in the photo above, where the GPS helps the pilot find his way. The flight was flown using 14 VFR charts and nothing more. (If you are interested, click to read more about real-life flying stories on my blog).

Hôtel le Concorde and its revolving restaurant, visible on the right.
Hôtel le Concorde and its revolving restaurant, visible on the right.

We are now above the Plains of Abraham. On the picture above, on the right, you can see the Hotel le Concorde and its revolving restaurant. We will possibly disturb the quiet atmosphere of the meal as we fly by…

The MNBAQ and the Battlefields Park are in sight.
The MNBAQ and the Battlefields Park are in sight.

Above, straight ahead, the gray buildings represent a portion of the Muse National des Beaux-Arts de Qubec (MNBAQ). A little further on is the open area of the Battlefields Park. In 1928, Lindbergh landed on that field to bring badly needed medicine for his friend Floyd Bennett. Can we normally land on the Battlefields Park, in the heart of Quebec City? Of course not. But that’s the beauty of a flight simulation; you can do whatever you want!

Cessna 170B on the Battlefields Park in Qubec City.
Cessna 170B on the Battlefields Park in Qubec City.

Once landed, the aircraft is allowed to decelerate gradually and then turned 180 degrees for the next takeoff. When winds are light, there is no need to worry about the direction of the takeoff.

Aerial view of Battlefield Parks with the Cessna 170B under MSFS 2020.
Aerial view of Battlefield Parks with the Cessna 170B under MSFS 2020.

Above, an aerial view of the Battlefields Park, with the virtual Cessna C-170B ready to take off again.

Partial view of Quebec City in flight simulation with MSFS 2020
Partial view of Quebec City in flight simulation with MSFS 2020

One last picture, this time with some additional buildings. The realism of the virtual scene with FS2020 is amazing!

I hope you enjoyed these two short flights. Whether you use the short landing technique for the Battlefields Park is really up to you, as there is enough space for a normal landing. But it is good to practice landing in the shortest distance possible. You never know when your engine will quit!

You can click on the following link for other challenging virtual flights   on my blog.

Categories
Flight Simulation

The Bugalaga runway (WX53) in Indonesia with MSFS 2020

Bugalaga airstrip in Indonesia photographed by Nico Sanchez
Bugalaga airstrip in Indonesia photographed by Nico Sanchez

Takeoffs and landings on the Bugalaga runway (WX53) in Indonesia can be classified as being in the challenging virtual flight category. The runway is not extraordinarily demanding, due to its comfortable size of 1478 feet by 75 feet. But the approach still requires more skill than a standard approach, especially with the trees on final and the steep slope.

Today’s flight with the MSFS 2020 flight simulator consists of taking off and landing on this sloping runway. To add to the fun, the flight must be done during adverse weather conditions. Indeed, the thunderstorms programmed in the virtual weather system complicate the task of the virtual pilot, as he has to deal with gusty winds and mechanical turbulence. And to add to the fun, the Pilatus normally used is replaced by a Cessna Grand Caravan 208B. The photo above represents the Bugalaga runway in reality.

View of the Bugalaga (WX53) sloped airstrip using MSFS 2020 flight simulator.
View of the Bugalaga (WX53) sloped airstrip using MSFS 2020 flight simulator.

Above is the virtual graphic interpretation of this runway located at 6233 feet above sea level (MSL) with the Cessna ready to take off. Asobo (Microsoft) did a good job.

Cessna Grand Caravan 208B ready for departure at Bugalaga airstrip with MSFS 2020
Cessna Grand Caravan 208B ready for departure at Bugalaga airstrip with MSFS 2020

The visibility could be better, but it does not prevent the aircraft from taking off on runway 06.

Cessna Grand Caravan 208B airborne from the Bugalaga sloped airstrip (WX53) using MSFS 2020 flight simulator
Cessna Grand Caravan 208B airborne from the Bugalaga sloped airstrip (WX53) using MSFS 2020 flight simulator

As you can see, the margin of error is pretty small for this aircraft that is less efficient than the Pilatus normally used in reality.

Mountains around the Bugalaga airstrip during a thunderstorm using MSFS 2020.
Mountains around the Bugalaga airstrip during a thunderstorm using MSFS 2020.

Immediately after takeoff, preparation begins for the outbound procedure and the 180 degrees turn that will put the aircraft on final for runway 24. The surrounding mountains require the pilot’s full attention.

Cessna Grand Caravan 208B approaching the Bugalaga airstrip in flight simulation.
Cessna Grand Caravan 208B approaching the Bugalaga airstrip in flight simulation.

Acceptable visibility but strong winds characterize the approach to Bugalaga.

The Bugalaga virtual sloped airstrip is visible in the distance in the mountains.
The Bugalaga virtual sloped airstrip is visible in the distance in the mountains.

Runway 24 is now visible in the mountains.

On final at 82 kts for the Bugalaga sloped airstrip (WX53) using MSFS 2020
On final at 82 kts for the Bugalaga sloped airstrip (WX53) using MSFS 2020

The approach speed with flaps out is about 82 knots.

Touching down on rwy 24 on the Bugalaga sloped airstrip using MSFS 2020
Touching down on rwy 24 on the Bugalaga sloped airstrip using MSFS 2020

The Cessna Grand Caravan C208B is about to touch down. You can see the steepness of the runway, which gets even steeper towards the end.

Cessna Grand Caravan 208B keeping enough speed to climb the sloped airstrip at Bugalaga in Indonesia (MSFS 2020)
Cessna Grand Caravan 208B keeping enough speed to climb the sloped airstrip at Bugalaga in Indonesia (MSFS 2020)

Once the aircraft has touched down, the virtual pilot must maintain enough speed to climb the hill at the end of the strip.

Cessna Grand Caravan 208B after landing in Bugalaga in flight simulation.
Cessna Grand Caravan 208B after landing in Bugalaga in flight simulation.

A last screen capture shows the aircraft having crossed the last hillock at the end of runway 24. The flight is short, but requires your full attention. Good luck to those who will try the experience!

Click on the link for more challenging virtual flights on my blog.

Categories
Flight Simulation

Challenging virtual flight in Idaho using MSFS 2020

MSFS 2020 map for the flight 3U2 to C53 in United States
MSFS 2020 map for the flight 3U2 to C53 in United States

The challenging virtual flight is from Johnson Creek Airport (3U2) to the Lower Loon Creek Airstrip (C53) in the United States, using the MSFS 2020 flight simulator. The software map shows the type of aircraft chosen, a CubCrafters X Cub on floats, as well as the trajectory over the Idaho mountains.

The idea of using an amphibious aircraft for this flight is a bit far-fetched, but the goal is to make the pilot’s job a little more difficult by adding weight to the aircraft.

Johnson Creek (Yellow Pine) airport 3U2 with MSFS 2020
Johnson Creek (Yellow Pine) airport 3U2 with MSFS 2020

Johnson Creek Airport (3U2) is a creation of Creative Mesh. It is charming, with tents here and there planted near the planes. The runway is 3480 feet long by 150 feet wide. It is oriented on a 17/35 axis and still quite high at 4960 feet above sea level (MSL).

Amphibian CubCrafters X Cub ready for departure at the Johnson Creek 3U2 virtual airport with MSFS 2020.
Amphibian CubCrafters X Cub ready for departure at the Johnson Creek 3U2 virtual airport with MSFS 2020.

Given the departure altitude, one must not forget to adjust the air/fuel mixture so as not to lose power on takeoff, especially since there is a mountain at the end of the runway and the floats increase the weight of this small aircraft. The air is also thinner as the flight takes place in summer and at a high altitude; this represents another obstacle to the aircraft’s performance.

Avoiding obstacles after take-off from the 3U2 Johnson Creek virtual airport using MSFS 2020.
Avoiding obstacles after take-off from the 3U2 Johnson Creek virtual airport using MSFS 2020.

The mountains near the runway present a significant obstacle. The virtual pilot must use the best possible angle of climb without worrying about the route recommended by the GPS. The flaps are kept slightly extended during the initial climb.

Flying over the Idaho mountains in flight simulation with MSFS 2020.
Flying over the Idaho mountains in flight simulation with MSFS 2020.

Once at a safe altitude and back on the GPS suggested route, the view of Idaho’s spectacular mountains is more enjoyable. Throughout the climb, the air-fuel mixture and altimeter (“B” on MSFS 2020) have to be adjusted.

CubCrafters X Cub floatplane over the Idaho mountains in flight simulation MSFS 2020
CubCrafters X Cub floatplane over the Idaho mountains in flight simulation MSFS 2020

An altitude of almost 10,000 feet ASL makes it possible to fly over the mountains without risk of collision.

Descending in the valley towards the ID8 Marble Creek airport in Idaho in fligh simulation.
Descending in the valley towards the ID8 Marble Creek airport in Idaho in fligh simulation.

At the right moment, when the small surrounding airports and the river appear on the GPS, we leave our GPS road, until now in straight line, and we align in the valley to fly over the river until our destination, avoiding the surrounding mountains. In the photo above, the descent has already begun, with a necessary gradual adjustment of the air-fuel mixture.

Flying over the (ID8) Marble Creek airport in Idaho using the MSFS 2020 flight simulator.
Flying over the (ID8) Marble Creek airport in Idaho using the MSFS 2020 flight simulator.

We fly over a first small airport. The picture above shows the planes parked on the runway of Marble Creek airport (ID8), which dimension is 1160 x 20 feet. For those which would be interested in trying a landing there, the orientation of the runway is 03/21 and the altitude of 4662 feet MSL.

Flying over the 2U8 Thomas Creek Airport in Idaho using the MSFS 2020 flight simulator.
Flying over the 2U8 Thomas Creek Airport in Idaho using the MSFS 2020 flight simulator.

On the way towards our final destination, we also fly at low altitude over the Thomas Creek (2U8).

Following the river towards the C53 Lower Loon Creek airstrip using the MSFS 2020 flight simulator.
Following the river towards the C53 Lower Loon Creek airstrip using the MSFS 2020 flight simulator.

The mountains on either side of the river require close attention, as the poor performance of a small aircraft equipped with floats does not allow for easy correction of navigational errors.

By the time the runway suddenly becomes visible, the plane will not be on course but 90 degrees off the ideal course. It will be necessary to quickly turn left into the valley, make a fairly sharp 180-degree turn to the right to avoid the mountains, and then get back on course to land. It is only at this point that the landing gear will be extended.

On final for Lower Loon Creek airstrip with MSFS 2020
On final for Lower Loon Creek airstrip with MSFS 2020

The photo above shows the aircraft on final for the Lower Loon Creek dirt and grass runway (C53). It is located at 4084 feet MSL and is only 1200 feet long by 25 feet wide. Note that the approach should be made on runway 16 when possible.

Amphibian CubCrafters X Cub rolling down the C53 Lower Loon Creek airstrip in Idaho after landing.
Amphibian CubCrafters X Cub rolling down the C53 Lower Loon Creek airstrip in Idaho after landing.

As always, a stabilized aircraft on final makes landing easier, regardless of the conditions.

Amphibian CubCrafters X Cub parked at the C53 Lower Loon Creek airstrip using MSFS 2020 flight simulator.
Amphibian CubCrafters X Cub parked at the C53 Lower Loon Creek airstrip using MSFS 2020 flight simulator.

We park the plane and rest a bit. Today, there is no one else here. But that’s not always the case in real life, as this video of a landing at Lower Loon Creek shows it.

Click on the link for more challenging virtual flights on my blog.

Categories
Flight Simulation

Elk River (NC06) to Mountain Air County Club (2NC0) with MSFS 2020.

Ready for departure at the Elk River airport (NC06) created by Cloud Studio.
Ready for departure at the Elk River airport (NC06) created by Cloud Studio.

Today’s twenty-minute virtual flight is conducted using Microsoft MSFS 2020 flight simulation software. The virtual airport at Elk River (NC06)   in the United States, modeled here by Pilot’s, is located at approximately 3468 feet (ft) above sea level (MSL). Its sloped 12/30 runway can accommodate many types of aircraft as its dimensions are still 4600 feet long by 75 feet wide. A golf course is located near the airport facilities.

The sloped runway of the Elk River airport (NC06) with the MSFS 2020 flight simulator.
The sloped runway of the Elk River airport (NC06) with the MSFS 2020 flight simulator.

In the distance, the end of runway 30 can be seen rising rapidly. The trip to Mountain Air County Club Airport (2NC0), modeled by Cloud Studio, is made with a single engine Cubcrafters NX Cub.

Enroute towards the Mountain Air County Club (2NC0) airport from Elk River (NC06) with MSFS 2020.
Enroute towards the Mountain Air County Club (2NC0) airport from Elk River (NC06) with MSFS 2020.

In direct flight with GPS, the virtual pilot will have to climb at around 7000 feet msl to avoid the surrounding mountains. It is therefore important to adjust the air/fuel mixture during climb and descent for the destination. Also, don’t forget to adjust the altimeter (press “B”) as you move away from the point of departure. Near the summits, you will experience mechanical turbulence, which is normal.

Aerial view of the Mountain Air County Club (2NC0) airport created by Pilot's.
Aerial view of the Mountain Air County Club (2NC0) airport created by Pilot’s.

The photo above shows the virtual airport of Mountain Air County Club (2NC0) with the MSFS 2020 flight simulator. The sloped runway is 2900 feet long and only 50 feet wide. A golf course surrounds this airport located at 4432 feet MSL. Since the winds are light, the approach will be on runway 14.

On final for the sloped runway of the Mountain Air County Club (2NC0) airport using MSFS 2020.
On final for the sloped runway of the Mountain Air County Club (2NC0) airport using MSFS 2020.

On final approach, it is easy to see the uphill angle of this airstrip, which is slightly more damaged than the one at Elk River.

A view of the cliff at the threshold of runway 32 at the 2NC0 Mountain County Air Club airport created by Pilot's pour MSFS 2020.
A view of the cliff at the threshold of runway 32 at the 2NC0 Mountain County Air Club airport created by Pilot’s pour MSFS 2020.

As we continue to taxi to the end of runway 14, we notice the cliff that awaits the pilot who has not properly prepared his landing. No forgiveness!

View from above of the Mountain Air County Club airport 2NC0 with the MSFS 2020 flight simulator.
View from above of the Mountain Air County Club airport 2NC0 with the MSFS 2020 flight simulator.

An elevated view shows the threshold of runway 14 and the buildings associated with the golf club. A few golf loving pilots have already parked their aircraft to the left of runway 14. For this screenshot, I used the excellent X-BOX drone.

Buildings and flowers at the Mountain Air County Club airport (2NC0) created by Pilot's for MSFS 2020.
Buildings and flowers at the Mountain Air County Club airport (2NC0) created by Pilot’s for MSFS 2020.

A final photo shows the buildings and flowers associated with the golf club. The bird recordings are easily heard, which enhance the scene. Flight simulation enthusiasts wishing to repeat the experience should do so under VFR conditions to keep an eye on the mountain tops during the approach.

Click on the link for more challenging virtual flights under MSFS 2020 and FSX on my blog.

Categories
Flight Simulation

The treacherous Launumu short sloped runway in Papua New Guinea.

An Air Saguenay DHC-3 Otter has made it from Qubec to Kokoda, in Papua New Guinea. It is expected to work around the remote mountain airfields for a while.

The Air Saguenay Otter is taxiing for the Kokoda runway towards Launumu in Papua New Guinea.
The Air Saguenay Otter is taxiing for the Kokoda runway towards Launumu in Papua New Guinea.

Today, the Otter heads for Launumu, a mountain airfield that is at an elevation of 5082 ft asl and 1200 feet long.

The Air Saguenay Otter departing Kokoda.
The Air Saguenay Otter departing Kokoda.

The pilot has to watch for the birds in order to avoid any collision in flight…

Otter aircraft and birds.
Otter aircraft and birds.

Following the Kokoda trail is a good way to reach Launumu.

The Otter in the Papua New Guinea mountains, following the Kokoda Trail.
The Otter in the Papua New Guinea mountains, following the Kokoda Trail.

If the mixture is not adjusted, the Otter will lose a lot of steam trying to climb up to 7,500 feet to cross the first line of mountains.

Inside the Otter cockpit, with the mixture adjusted.
Inside the Otter cockpit, with the mixture adjusted.

Anybody landing and departing from Launumu deals with high density altitude. This is not only due to the elevation of the airfield but also to the very warm and moist air present in the region. Consequently, some additional airspeed is required on the approach and on the departure.

The Launumu runway is in sight.
The Launumu runway is in sight.

When a pilot lands southwestward in Launumu coming from Kokoda, he must dive in a valley to lose altitude, which will increase the aircraft’s airspeed. The Launumu runway is in sight.

If the airspeed is not promptly corrected, the approach to the Launumu runway will be too fast. Any airspeed above 60 knots forces the pilot to overshoot (unless you are ready to virtually die a few times while trying).

Losing altitude while respecting the flaps speed limit.
Losing altitude while respecting the flaps speed limit.

So, once the higher mountains are crossed, a good way of losing altitude without gaining airspeed is to use flaps (at the corresponding airspeed) and do a tight 360 degree coordinated turn while descending. That way, the pilot will end up in line with the runway and at the speed you want, which is around 50 knots.

Turning and descending in the valley during an approach for Launumu.
Turning and descending in the valley during an approach for Launumu.

The Otter floats endlessly because of its huge wings.

The Air Saguenay Otter is on approach for the Launumu short runway in Papua New Guinea.
The Air Saguenay Otter is on approach for the Launumu short runway in Papua New Guinea.

On final for Launumu, the pilot might end up having to deal with the bushes that are close to the runway. It is not unusual for the Otter or the Beaver to complete a difficult approach with bushes wrapped around the landing gear.

A Air Saguenay Otter is on final for the Launumu mountain runway.
A Air Saguenay Otter is on final for the Launumu mountain runway.
A Otter aircraft is arriving on the Launumu high altitude runway.
A Otter aircraft is arriving on the Launumu high altitude runway.

Launumu has a surprise for the newcomers. If the pilot lands southwestward, like it was just done here, and the aircraft is not stopped within approximately 600 feet, it starts accelerating since there is a pronounced slope downward in the second half of the runway. This slope leads to a cliff. In case of a missed approach, the pilot can use the slope downwards and dive in the valley at the end of the runway to build up airspeed and start a new approach.

Now that the hard work is done, it is time to wait for the passengers and cargo, and plan the next leg…

A Otter aircraft is backtracking the Launumu runway after landing.
A Otter aircraft is backtracking the Launumu runway after landing.
A Otter aircraft is parked on the Launumu runway in Papua New Guinea.
A Otter aircraft is parked on the Launumu runway in Papua New Guinea.

The virtual scenery and clouds required softwares like REX, REX Texture Direct, Cumulus X, FTX Global, FTX Global Vector and Pilot’s FS Global 2010.

Click on the link for other challenging virtual flights on my blog.

Categories
Flight Simulation

Gliding operations on a 12 degree sloped runway in Papua New Guinea

Well, that is it! The first glider just arrived at the Fane Parish airport in Papua New Guinea…

Glider on the Fane Parish short grass runway in Papua New Guinea.
Glider on the Fane Parish short grass runway in Papua New Guinea.

Before it is officially offered as a tourist attraction for the region, some attempts at taking-off and landing must be done. The first trial attracts a few people!

Aircraft and glider on the Fane Parish mountain airfield.
Aircraft and glider on the Fane Parish mountain airfield.

The descent along the twelve degree sloped runway is a bit rough for the glider’s low wings, as there are some bushes that will have to be trimmed!

An aircraft pulls a glider after the take-off from the Fane Parish sloped runway in Papua New Guinea.
An aircraft pulls a glider after the take-off from the Fane Parish sloped runway in Papua New Guinea.

The weather is nice and very warm. The only potential problem is the mountain ahead.

Glider being towed by an aircraft after the take-off from the Fane Parish mountain airfield.
Glider being towed by an aircraft after the take-off from the Fane Parish mountain airfield.

Finally, the pilot cuts the link. He is free to go!

The link is cut between the plane and the glider after the take-off from Fane Parish.
The link is cut between the plane and the glider after the take-off from Fane Parish.

The glider flies silently over the lush area of Papua New Guinea.

Virtually gliding over the Papua New Guinea territory (FSX).
Virtually gliding over the Papua New Guinea territory (FSX).

Using the rising warm air currents, the glider gains altitude.

The glider gains altitude.
The glider gains altitude.

Why not a pass over Fane?

Gliding over the Fane Parish village.
Gliding over the Fane Parish village.

Here is another isolated village alongside a mountain.

Flight with a virtual glider over an isolated village of Papua New Guinea.
Flight with a virtual glider over an isolated village of Papua New Guinea.

A last steep turn in order to realign for the approach at Fane Parish.

Last steep turn for a short landing on the Fane Parish mountain sloped runway.
Last steep turn for a short landing on the Fane Parish mountain sloped runway.

The airbrakes are out and the speed reasonable. The sloped runway is just ahead, on top of the mountain to the right.

Approach of a glider on the elevated airfield at Fane Parish in Papua New Guinea. The speed and angle of approach are right on target.
Approach of a glider on the elevated airfield at Fane Parish in Papua New Guinea. The speed and angle of approach are right on target.

Keeping just enough altitude on the approach to be safe.

Glider approaching the 12 degree sloped runway of the Fane Parish aerodrome.
Glider approaching the 12 degree sloped runway of the Fane Parish aerodrome.

Now that the landing is a sure thing, it is time to use the airbrakes again to slow down as much as possible.

Virtual glider arriving over the Fane Parish runway in Papua New Guinea. The airbrakes are being used.
Virtual glider arriving over the Fane Parish runway in Papua New Guinea. The airbrakes are being used.

Keeping in mind that this mountain airfield as a good slope, it is better to have a bit of extra speed. Nobody likes to stall a few feet over a runway!

Virtual glider with airbrakes over the Fane Parish runway
Virtual glider with airbrakes over the Fane Parish runway

What an experience it was! But I’ll need some help to pull the glider up the slope!

Glider on the Fane Parish runway
Glider on the Fane Parish runway

The virtual flight was great, the view was worth every penny, and I think that this could become a new touristic attraction for the region and the more wealthy visitors…

The glider has landed on the runway at the Fane Parish airport in Papua New Guinea.
The glider has landed on the runway at the Fane Parish airport in Papua New Guinea.

Click on the link for other challenging virtual flights on my blog.