Categories
Flight Simulation

The treacherous Launumu short sloped runway in Papua New Guinea.

An Air Saguenay DHC-3 Otter has made it from Québec to Kokoda, in Papua New Guinea. It is expected to work around the remote mountain airfields for a while.

The Air Saguenay Otter is taxiing for the Kokoda runway towards Launumu in Papua New Guinea.
The Air Saguenay Otter is taxiing for the Kokoda runway towards Launumu in Papua New Guinea.

Today, the Otter heads for Launumu, a mountain airfield that is at an elevation of 5082 ft asl and 1200 feet long.

The Air Saguenay Otter departing Kokoda.
The Air Saguenay Otter departing Kokoda.

The pilot has to watch for the birds in order to avoid any collision in flight…

Otter aircraft and birds.
Otter aircraft and birds.

Following the Kokoda trail is a good way to reach Launumu.

The Otter in the Papua New Guinea mountains, following the Kokoda Trail.
The Otter in the Papua New Guinea mountains, following the Kokoda Trail.

If the mixture is not adjusted, the Otter will lose a lot of steam trying to climb up to 7,500 feet to cross the first line of mountains.

Inside the Otter cockpit, with the mixture adjusted.
Inside the Otter cockpit, with the mixture adjusted.

Anybody landing and departing from Launumu deals with high density altitude. This is not only due to the elevation of the airfield but also to the very warm and moist air present in the region. Consequently, some additional airspeed is required on the approach and on the departure.

The Launumu runway is in sight.
The Launumu runway is in sight.

When a pilot lands southwestward in Launumu coming from Kokoda, he must dive in a valley to lose altitude, which will increase the aircraft’s airspeed. The Launumu runway is in sight.

If the airspeed is not promptly corrected, the approach to the Launumu runway will be too fast. Any airspeed above 60 knots forces the pilot to overshoot (unless you are ready to virtually die a few times while trying).

Losing altitude while respecting the flaps speed limit.
Losing altitude while respecting the flaps speed limit.

So, once the higher mountains are crossed, a good way of losing altitude without gaining airspeed is to use flaps (at the corresponding airspeed) and do a tight 360 degree coordinated turn while descending. That way, the pilot will end up in line with the runway and at the speed you want, which is around 50 knots.

Turning and descending in the valley during an approach for Launumu.
Turning and descending in the valley during an approach for Launumu.

The Otter floats endlessly because of its huge wings.

The Air Saguenay Otter is on approach for the Launumu short runway in Papua New Guinea.
The Air Saguenay Otter is on approach for the Launumu short runway in Papua New Guinea.

On final for Launumu, the pilot might end up having to deal with the bushes that are close to the runway. It is not unusual for the Otter or the Beaver to complete a difficult approach with bushes wrapped around the landing gear.

A Air Saguenay Otter is on final for the Launumu mountain runway.
A Air Saguenay Otter is on final for the Launumu mountain runway.
A Otter aircraft is arriving on the Launumu high altitude runway.
A Otter aircraft is arriving on the Launumu high altitude runway.

Launumu has a surprise for the newcomers. If the pilot lands southwestward, like it was just done here, and the aircraft is not stopped within approximately 600 feet, it starts accelerating since there is a pronounced slope downward in the second half of the runway. This slope leads to a cliff. In case of a missed approach, the pilot can use the slope downwards and dive in the valley at the end of the runway to build up airspeed and start a new approach.

Now that the hard work is done, it is time to wait for the passengers and cargo, and plan the next leg…

A Otter aircraft is backtracking the Launumu runway after landing.
A Otter aircraft is backtracking the Launumu runway after landing.
A Otter aircraft is parked on the Launumu runway in Papua New Guinea.
A Otter aircraft is parked on the Launumu runway in Papua New Guinea.

The virtual scenery and clouds required softwares like REX, REX Texture Direct, Cumulus X, FTX Global, FTX Global Vector and Pilot’s FS Global 2010.

Click on the link for other challenging virtual flights on my blog.

Categories
Flight Simulation

A radical way of dealing with crosswinds in flight simulation.

There is no aircraft in the sky around the Port Moresby Jacksons (AYPY) virtual airport today. No aircraft in the sky but one, a medevac flight.

Arrival of the Medevac towards the Port Moresby Jacksons (AYPY) airport. The winds forbid a normal landing.
Arrival of the Medevac towards the Port Moresby Jacksons (AYPY) airport. The winds forbid a normal landing.

The winds blow from 240 degree at 50G60 kts and the runways are oriented 14/32. It is way above the maximum crosswind authorized for any aircraft.

But the Shrike Commander’s crew cannot wait until the wind calms down. They must land in the next few minutes in order to save a patient’s life.

The Port Moresby Jacksons (AYPY) is in sight in the center top of the screen capture.
The Port Moresby Jacksons (AYPY) is in sight in the center top of the screen capture.

As there is no traffic around, the captain has told ATC he intends to do a safe, efficient but non-standard approach.

The aircraft is gradually positioned to arrive in a straight line for the AYPY hangar.
The aircraft is gradually positioned to arrive in a straight line for the AYPY hangar.
The aircraft aligns itself to face the wind blowing across the runways.
The aircraft aligns itself to face the wind blowing across the runways.

Arriving straight across the runways, facing the wind, the crew intends to land the aircraft a few feet short of a hangar. The captain requests that someone opens the hangar doors right away. The captain will terminate the approach in the hangar, protected from the wind.

Trajectory of the Shrike Commander 500S towards the hangar at the Port Moresby Jacksons airport. The hangar door has been open for the arrival.
Trajectory of the Shrike Commander 500S towards the hangar at the Port Moresby Jacksons airport. The hangar door has been open for the arrival.

It is safer to arrive facing the wind and immediately enter the hangar, straight ahead. No taxiing with a 60 knots crosswind.

Useless to say, ATC has already refused the request. But the pilot is the only one who decides of the best landing surface, for the safety of the passengers and himself. He proceeds with the approach after having clearly indicated which path will be followed.

The Shrike Commander 500S over the houses near the Port Moresby Jacksons airport.
The Shrike Commander 500S over the houses near the Port Moresby Jacksons airport.

The main problem for the approach is the low level mechanical turbulence caused by the gusty 60 kts winds.

If ATC wants to file a complaint, now is a good time to take a picture of the aircraft and its registration to support the case.

Flying by the AYPY control tower.
Flying by the AYPY control tower.

The actual ground speed of the airplane is around 20 kts.

The Shrike Commander 500S approaching across the runways at the Port Moresby Jacksons airport. The winds blow from 240 degree at 50G60.
The Shrike Commander 500S approaching across the runways at the Port Moresby Jacksons airport. The winds blow from 240 degree at 50G60.

The steady high wind speed is actually safer for the crew than if the winds were 240 at 35G60.

Ground speed of about 20 knots for the Shrike Commander 500S on final for the Port Moresby Jacksons hangar (AYPY).
Ground speed of about 20 knots for the Shrike Commander 500S on final for the Port Moresby Jacksons hangar (AYPY).

Still a bit above the runway and with a 10-20 knots ground speed. The airspeed indicator shows the strength of the wind itself plus the ground speed.

Indicated airspeed 70 knots.
Indicated airspeed 70 knots.
Frontal view of the Shrike Commander 500S about to land in front of the hangar at AYPY.
Frontal view of the Shrike Commander 500S about to land in front of the hangar at AYPY.

Floating like a hot air balloon or almost!

Side view of the Shrike Commander 500S on final for the Port Moresby Jacksons airport's hangar.
Side view of the Shrike Commander 500S on final for the Port Moresby Jacksons airport’s hangar.
The Shrike Commander will soon land in Port Moresby Jacksons.
The Shrike Commander will soon land in Port Moresby Jacksons.

As the aircraft touches the ground, it stops almost immediately. It is necessary to apply power to reach the hangar, as you can see with the white trail on the ground behind the aircraft.

In real life, the touch-down would have had to be as soon as the asphalt start since the presence of the hangar lowers the wind speed a bit.

The Shrike Commander lands a few feet before the hangar. Additional power is mandatory to reach the hangar.
The Shrike Commander lands a few feet before the hangar. Additional power is mandatory to reach the hangar.

A few seconds after the touch-down, the aircraft is in the hangar, protected from the wind, and both doctor and patient can quickly head out to the hospital.

The Shrike Commander 500S in the hangar at Port Moresby (AYPY).
The Shrike Commander 500S in the hangar at Port Moresby (AYPY).

Once in the hangar, the winds were adjusted to zero, which is kind of logical, unless the opposite wall is missing!

View of the Port Moresby Jacksons (AYPY)
View of the Port Moresby Jacksons (AYPY)

It was now time to brace for another storm, which was the inquiry that would possibly follow the landing!

(P.S.: Tim Harris and Ken Hall were the creators of this virtual Port Moresby Jacksons international airport) and it is sold by ORBX. The aircraft is sold by Carenado).

Click on the link for more unhinged virtual flights on my blog.

Categories
Flight Simulation

The Captain Sim’s B-52 in flight simulation

Here are a few modified screen captures of a recent virtual flight made with the Captain Sim’s B-52.

Captain Sim's virtual B-52 aircraft in southern California
Captain Sim’s virtual B-52 aircraft in southern California

The high quality of the modelized clouds and of the landscape in the background helped create screen captures that were even more realistic. FSX was the flight simulation platform used for the flight.  REX Simulations made the virtual cloud textures.

The landscape is a creation of ORBX. At the base of the three screen captures were the following ORBX products: FTX Global Base Pack, FTX Global Vector, FTX Global Open LC North America, FTX Global Trees HD and NA Southern California. The time for the flight was early in the morning.

Virtual clouds created by REX. FSX flight simulation platform.
Virtual clouds created by REX. FSX flight simulation platform.

In the picture below, a few modifications were made using Photoshop to induce a feeling of speed. When comes the time to modify the screen capture of a virtual aircraft with an image editing software, the same rules apply as for a normal picture: moderation gives better results.

A virtual B-52 at high speed and low altitude in Southern California.
A virtual B-52 at high speed and low altitude in Southern California.

The sound of the Boeing B-52’s eight engines is quite impressive. Despite the enormous power available for take-off, the flight simulation enthousiast cannot simply apply full power and hope that the military jet will get airborne. By the book procedures have to be followed, otherwise there won’t be any take-off. A parachute can be deployed when landing for a better visual effect, but the flight simulator will not include it in its calculations for the required landing and breaking distance.

Categories
Flight Simulation

From Chile to Rothera, Antarctica, with the BAS Twin Otter and the FSX flight simulator

Aerial view of the Rothera research station in Antarctica.
Aerial view of the Rothera research station in Antarctica.

For this flight, you will need the Antarctica X flight simulation software made by Aerosoft.

The maintenance of BAS Twin Otters and their Dash-7 is done in Calgary, Canada, and head to Antarctica during the austral summer, between October and March. So if you want to try a flight simulation with a Twin Otter or a Dash-7 from Chile to Antarctica, pick one of those months as it is more realistic.

Since it would be a bit long to make all the virtual flights from Canada to Antarctica, I chose to do the last three legs to see what the landscape looks like.

A Twin Otter is normally approved for a maximum take-off weight of 12,500 pounds. But with skis weighing 800 pounds and additional fuel required to fly longer legs, BAS (British Antarctic Survey) has arranged to have their Twin Otters approved at 14,000 pounds. Even at this weight, the aircraft could still operate on one engine.

First, the aircraft departs La Florida airport (SCSE) in Chile, after a mandatory fuel stop before its next destination, the El Tepual de Puerto Montt airport (SCTE), also in Chile.

Airborne from La Florida, Chile, after refueling.
Airborne from La Florida, Chile, after refueling.

This virtual flight with the Twin Otter last about 4:25 hours (696 nm) with a heading of 185 degrees.

In flight towards El Tepual de Puerto Montt, Chile.
In flight towards El Tepual de Puerto Montt, Chile.

For the screen captures, FTX Global, FTX Vector and Pilot’s FS Global 2010 were installed. Orbx has also reworked the original El Tepual de Puerto Montt airport to include some people, aircrafts and new buildings. It makes for a more interesting destination.

Twin Otter on final approach for El Tepual de Puerto Montt, Chile.
Twin Otter on final approach for El Tepual de Puerto Montt, Chile.
Ready for refueling at the El Tepual de Puerto Montt, Chile.
Ready for refueling at the El Tepual de Puerto Montt, Chile.

The next flight is from the El Tepual de Puerto Montt airport (SCTE) to Punta Arenas (SCCI), both in Chile.

Twin Otter aircraft airborne and heading to Punta Arenas, Chile.
Twin Otter aircraft airborne and heading to Punta Arenas, Chile.

This flight, made low across the Andes, absolutely requires good weather. You will have to climb to 17,000 feet to make the direct route between the airports.

Twin Otter over the Andes climbing for17,000 feet
Twin Otter over the Andes climbing for17,000 feet

There are often spectacular views available to the virtual pilot. Yes, the BAS Twin Otter is flown by only one pilot, but there is always somebody else accompanying him.

Twin Otter aircraft approaching Punta Arenas, Chile.
Twin Otter aircraft approaching Punta Arenas, Chile.

Don’t forget to lean the mixture during the climb. Also use some additional oxygen (!!) if you don’t want to start singing and flying in circles after a while. Again, pay attention to the mixture during the descent, considering that you will be losing close to 17,000 feet.

Refueling at Punta Arenas, Chile.
Refueling at Punta Arenas, Chile.

The Punta Arenas airport, straight from FSX, is not an interesting airport to look at. It is a very bare airport, with just a single building and a VOR.

But since the BAS pilot do that mandatory leg just before heading to Antarctica, I chose not to change the route. The general direction for the flight to Punta Arenas was 164 degrees and the duration approximately 4:28 hours. You can obviously accelerate the process once the aircraft is established at its flying altitude.

The last flight is from Punta Arenas, Chile, to Rothera, Antarctica.

Twin Otter aircraft heading for the Rothera airport in Antarctica.
Twin Otter aircraft heading for the Rothera airport in Antarctica.

The Twin Otter will take between six and seven hours on an average heading of 162 degrees to cover the distance between Punta Arenas (SCCI) and Rothera (EGAR).

Over the snowy mountains of Chile towards Rothera, Antarctica
Over the snowy mountains of Chile towards Rothera, Antarctica
Carrying extra fuel on the flight towards Rothera, Antarctica.
Carrying extra fuel on the flight towards Rothera, Antarctica.

The runway at Rothera is made of gravel and is 2953 feet long. That is plenty for the Twin Otter and the DASH-7. Before you make the flight, go into the aerosoft/Antarctica X file in your flight simulator and click on the “LOD 8.5” option (the default is at LOD 4.5). It will give you much better details when you are approaching Antarctica.

The antarctic Rothera research station is in sight
The antarctic Rothera research station is in sight
Twin Otter aircraft on final at Rothera, Antarctica.
Twin Otter aircraft on final at Rothera, Antarctica.

The Airliner World magazine had an excellent article on the BAS operations in Antarctica in its March 2017 edition. It included plenty of interesting pictures and detailed explanations on what is expected from pilots and personnel working for BAS. I compared the Rothera virtual airport with the real one through the available pictures in Airliner World and was pleasantly surprised with the level of accuracy of the details.

A British Antarctic Survey Twin Otter aircraft is landing on the Rothera runway, Antarctica
A British Antarctic Survey Twin Otter aircraft is landing on the Rothera runway, Antarctica

The BAS always prepares itself for the worst: “[It] carries parts valued at around $5m, including a replacement engine for each aircraft, spare props and undercarriage components”.

Twin Otter aircraft after a landing on the Rothera runway, Antarctica
Twin Otter aircraft after a landing on the Rothera runway, Antarctica

A new development for the Air Unit has been its work with the RAF, using C-130 Hercules transports to airdrop supplies into the field. They fly from Punta Arenas and drop fuel to support our science programmes on the Ronne Ice Shelf. […] It is all part of their training system and the accuracy they drop to is very impressive. They might drop 250 drums, think how many Twin Otter trips that would have been for us (48 or more than 400 flying hours)”.

The main hangar in Rothera, Antarctica.
The main hangar in Rothera, Antarctica.

Aerosoft has made an excellent job in replicating the buildings in Rothera, BAS’s main research station in Antarctica. The biggest hangar can accommodate three Twin Otters and a Dash-7 altogether.

Inside the main hangar at the Rothera research station, Antarctica.
Inside the main hangar at the Rothera research station, Antarctica.

When your flight is over, do not forget to change the settings back to LOD 4.5 for Antarctica in your aerosoft/Antarctica X files.

For other standard virtual flights, click here:

Standard Virtual Flights

For more articles on flight simulation on my web site, click on the following link : Flight simulation

Categories
Flight Simulation

Flight simulation: the “Tapini” virtual scenery in Papua New Guinea (FSX)

A virtual DHC-6 Twin Otter enroute for Kokoda after a fire on the right engine while departing Yongai (KGH) in Papua New Guinea PNG (FSX)
A virtual DHC-6 Twin Otter enroute for Kokoda after a fire on the right engine while departing Yongai (KGH) in Papua New Guinea PNG (FSX)

Ken Hall and Tim Harris have created a new virtual scenery for flight simulation enthousiasts. It is called “Tapini” and sold by ORBX. Their penultimate creation, AYPY Jackson’s International, allowed the virtual pilot to fly in very demanding virtual airports along the Kokoda Trail in Papua New Guinea. “Tapini” represents a whole new challenge and I have included several screen captures to show you how the different runways look in this new virtual scenery.

“Tapini”, still in Papua New Guinea, allows the virtual pilot to test his skills on seven new runways located in difficult areas of the Owen Stanley Range. Those airports also constitute a serious test for any aircraft, like in the picture above where damages to the right engine were sustained at Yongai.

A virtual Piper Pacer virtuel is about to land on the Ononge (ONB) curved runway in Papua New Guinea PNG (FSX). (It is possible to see the curve starting on the top of the image)
A virtual Piper Pacer virtuel is about to land on the Ononge (ONB) curved runway in Papua New Guinea PNG (FSX). (It is possible to see the curve starting on the top of the image)

To improve the virtual clouds while flying between the different airports, I used either REX or FSGRW weather engines. The cloud textures and weather effects were improved by one or many of the following products: Cumulus X, PrecipitFX, REX Texture Direct and REX Soft Clouds.

A virtual Dash 7 has just landed in Woitape (WTP) in Papua New Guinea PNG (FSX)
A virtual Dash 7 has just landed in Woitape (WTP) in Papua New Guinea PNG (FSX)

As variety is more fun, and also due to the different challenges created by those runways, the following virtual aircrafts were used: Carenado C-185F,  Lionheart Creations PA-18,  Virtavia DHC-4,  Aerosoft DHC-6 Twin Otter and Milton Shupe DHC-7.

The “Tapini” scenery gives the pilot a choice between the seven following runways:

ASB (Asimba)

A tricky, very short runway near a river.

A DHC-4 Caribou virtual aircraft is on approach for Asimba's sloped runway (ASB) in Papua New Guinea PNG (FSX)
A DHC-4 Caribou virtual aircraft is on approach for Asimba’s sloped runway (ASB) in Papua New Guinea PNG (FSX)

This is a very interesting runway, best done with a STOL aircraft like the Caribou DHC-4. The inhabitants might have to help you clear out some branches along the runway, considering the size of the aircraft. The runway slopes down on take-off, which helps to build up speed.

A DHC-4 Caribou virtual aircraft is on a stopover at Asimba (ASB) in Papua New Guinea PNG (FSX)
A DHC-4 Caribou virtual aircraft is on a stopover at Asimba (ASB) in Papua New Guinea PNG (FSX)
A DHC-4 Caribou virtual aircraft is airborne from Asimba (ASB) in Papua New Guinea PNG (FSX)
A DHC-4 Caribou virtual aircraft is airborne from Asimba (ASB) in Papua New Guinea PNG (FSX)

FNE (Fane)

A one-way, really challenging 12 degree sloped runway, with unpredictable winds.

A De Havilland DHC-7 virtual aircraft on final for the Fane (FNE) airport's sloped runway in Papua New Guinea PNG (FSX)
A De Havilland DHC-7 virtual aircraft on final for the Fane (FNE) airport’s sloped runway in Papua New Guinea PNG (FSX)

The runway sits on top of a hill. It is an amazing experience to land there. No wonder there are a lot of people watching the arrivals and departures.

If you slow down too quickly with an aircraft as big as the DHC-7 on that sloped runway, the twelve degree angle prevents you from moving forward. You must let the aircraft come down the runway very slowly, using the power to control the descent and the rudder to stay aligned on the runway, then apply take-off power for a few seconds to build just enough momentum to get above the hill.

A De Havilland DHC-7 virtual aircraft just finished taxiing uphill on the Fane (FNE) airport's sloped runway in Papua New Guinea PNG (FSX)
A De Havilland DHC-7 virtual aircraft just finished taxiing uphill on the Fane (FNE) airport’s sloped runway in Papua New Guinea PNG (FSX)

To turn the aircraft around, it’s a combination of power and reverse thrust until you clear all the obstacles (any humans venturing behind the aircraft will also be cleared during the operation…).

A De Havilland DHC-7 virtual aircraft is airborne from the Fane (FNE) airport's sloped runway in Papua New Guinea PNG (FSX)
A De Havilland DHC-7 virtual aircraft is airborne from the Fane (FNE) airport’s sloped runway in Papua New Guinea PNG (FSX)

There is a not so friendly man with a rifle watching the airport’s operations. Even the United Nations staff do not stay longer than necessary…

KGH (Yongai)

A very bumpy one-way sloped runway. A real bush aircraft is needed here!

A virtual DHC-6 Twin Otter on approach for the Yongai (KGH) bumpy runway in Papua New Guinea PNG (FSX)
A virtual DHC-6 Twin Otter on approach for the Yongai (KGH) bumpy runway in Papua New Guinea PNG (FSX)

Even with a real bush aircraft, there is a possibility that one of the aircraft’s propellers hits the ground while taxiing on the runway. There are so many deep holes that are hard to see, I can only wish the best of lucks to everyone trying out this airport!

A virtual DHC-6 Twin Otter on the Yongai (KGH) bumpy runway in Papua New Guinea PNG (FSX)
A virtual DHC-6 Twin Otter on the Yongai (KGH) bumpy runway in Papua New Guinea PNG (FSX)

Keep a close watch on the area near the little house at the end of the runway. The DHC-6 was really shaken while turning around for take-off. One of the propellers hit the ground but no problems were detected…until the aircraft was airborne. The fire alarm then went off, just as the aircraft was passing the runway threshold, seconds before flying over a cliff.

A virtual DHC-6 Twin Otter with its right engine on fire is just airborne from the Yongai (KGH) bumpy runway in Papua New Guinea PNG (FSX)
A virtual DHC-6 Twin Otter with its right engine on fire is just airborne from the Yongai (KGH) bumpy runway in Papua New Guinea PNG (FSX)

So much for the planned trip… and it was out of the question to return to Yongai on one engine. I had to pull the handle to stop the fire, feather the prop, cut the fuel where it was not needed anymore then head to the Kokoda airport as it was a sure alternative, having a long runway and an elevation that did not require the use of extra power.

KSP (Kosipe)

A relatively short runway that requires good calculations from the pilot, since it is located high in the mountains.

A virtual Cessna C-185F is enroute to the Kosipe (KSP) airport in Papua New Guinea PNG (FSX)
A virtual Cessna C-185F is enroute to the Kosipe (KSP) airport in Papua New Guinea PNG (FSX)

The Cessna C-185F is a very well suited aircraft for that runway. Make sure not to be too heavy on the brakes, as new C-185 propellers are hard to find in Kosipe. You can land in both directions. Ensure that the mixture is set properly as the airport is above 6300 feet.

A virtual Cessna C-185F is rolling after touching down on the Kosipe (KSP) runway in Papua New Guinea PNG (FSX)
A virtual Cessna C-185F is rolling after touching down on the Kosipe (KSP) runway in Papua New Guinea PNG (FSX)
A virtual Cessna C-185F is airborne from the Kosipe (KSP) runway in Papua New Guinea PNG (FSX)
A virtual Cessna C-185F is airborne from the Kosipe (KSP) runway in Papua New Guinea PNG (FSX)

ONB (Ononge)

A curved and very bumpy runway! For those who like low flying. Make sure you choose the good aircraft here; there is not much manoeuvering area once on the ground.

A Virtual Piper Pacer on approach for the Ononge (ONB) curved runway in Papua New Guinea PNG (FSX)
A Virtual Piper Pacer on approach for the Ononge (ONB) curved runway in Papua New Guinea PNG (FSX)

Ononge looks really scary when you show up on final for the first time. You wonder if the little trail that you see can really be a runway. For that kind of situation, the little Piper Pacer is an excellent aircraft, approaching slowly and braking on a dime. The runway is curved in the middle so you will need a bit of right rudder to keep the aircraft aligned with the runway.

A Virtual Piper Pacer on the Ononge curved runway in Papua New Guinea PNG (FSX)
A Virtual Piper Pacer on the Ononge curved runway in Papua New Guinea PNG (FSX)

I guess all those people with their cargo are waiting for a bigger airplane than mine…

A Virtual Piper Pacer is airborne from the Ononge curved runway in Papua New Guinea PNG (FSX)
A Virtual Piper Pacer is airborne from the Ononge curved runway in Papua New Guinea PNG (FSX)

TAP (Tapini)

A challenging one-way sloped runway nestled in a tight valley. You can even use an ILS to arrive there!

A virtual DHC-4 Caribou on short final for the Tapini (TAP) sloped runway in Papua New Guinea PNG (FSX)
A virtual DHC-4 Caribou on short final for the Tapini (TAP) sloped runway in Papua New Guinea PNG (FSX)

This is a superbly designed area and airport. I visited it with the DHC-4 Caribou but any other big STOL aircraft would have fitted there. There is enough room to manoeuver. It is not too bumpy. There is an interesting slope: it starts downward and ends upward: this helps to slow down the aircraft after landing.

A virtual DHC-4 Caribou on the ground at the Tapini (TAP) airport in Papua New Guinea PNG (FSX)
A virtual DHC-4 Caribou on the ground at the Tapini (TAP) airport in Papua New Guinea PNG (FSX)
A virtual DHC-4 Caribou is airborne from the Tapini (TAP) airport in Papua New Guinea PNG (FSX)
A virtual DHC-4 Caribou is airborne from the Tapini (TAP) airport in Papua New Guinea PNG (FSX)

WTP (Woitape)

Looks like a no brainer, but there is no margin of error on this one-way slightly sloped runway. Very precise calculations and settings are required if you want to land there with something else than a small aircraft.

A virtual De Havilland DHC-7 on final approach for the Woitape airport (WTP) virtual airport in Papua New Guinea (FSX)
A virtual De Havilland DHC-7 on final approach for the Woitape airport (WTP) virtual airport in Papua New Guinea (FSX)

I found the runway to be very slippery with the De Havilland DHC-7. I must say that there was a good crosswind, as I was flying with real life weather and winds. The DHC-7 behaves like a big boat while decelerating on such a runway.

A virtual De Havilland DHC-7 on the ground with two Twin Otters at the Woitape airport (WTP) in Papua New Guinea (FSX)
A virtual De Havilland DHC-7 on the ground with two Twin Otters at the Woitape airport (WTP) in Papua New Guinea (FSX)

The Woitape scenery is gorgeous. It is nice to have all those well designed virtual aircrafts, people and animals on site as this makes the scenery so much more realistic.

A De Havilland Virtual DHC-7 is airborne from the Woitape airport (WTP) in Papua New Guinea (FSX)
A De Havilland Virtual DHC-7 is airborne from the Woitape airport (WTP) in Papua New Guinea (FSX)

I love this new Orbx product. When you fly in such a realistic scenery, the brain does not make much difference between what is real and what is virtual. It really works! And if you use real life weather downloaded from the internet, it’s even better.

I tried the seven airports included in the “Tapini” virtual scenery and they are quite demanding. Yongai was the most challenging airport of them all. I had to do two missed approaches there since I ended up too high on the approach. I eventually got it right, like in real life!

I used the Microsoft flight simulator X (FSX) for all the virtual flights, but other platforms would have worked as well (Dovetail Games FSX Steam edition (FSX: SE) and all versions of P3D). The following products were also installed on my flight simulator: FTX Global, FTX Global Vector and Holgermesh, as well as Pilot’s FS Global 2010.

It is a totally immersive virtual experience and you have to forget everything else when undertaking those challenging virtual flights… if you want to make it “virtually” alive!

For more articles on flight simulation on my web site, click on the following link : Flight simulation

Categories
Screen captures

The Graf Zeppelin over Germany (virtual flight with FSX)

D-LZ127 Graf Zeppelin au-dessus de l'Allemagne (FSX)
D-LZ127 Graf Zeppelin au-dessus de l’Allemagne (FSX)

Using ORBX Global program, I took this FSX screen capture of the Graf Zeppelin over Germany. The cloud effects are derived from REX and the Zeppelin itself was found on flightsim.com and it is a free software. For a better atmosphere, if you decide to take a screen capture, fly the Zeppelin either during the morning or at dusk while there is still enough light, and so that the sun will strike the balloon from the side.

Few videos are available on YouTube to show you how to deal with the Zeppelin. It’s not enough to apply full throttle and hope that it will rise because it will not. You first have to take care of the ballasts. But within only few minutes of watching the videos and applying the correct manoeuvers, I promise that you will be airborne and then the rest will come pretty naturally.

The picture was slightly edited with Photoshop to add some constrasts to the screen capture.