Well, that is it! The first glider just arrived at the Fane Parish airport in Papua New Guinea…
Before it is officially offered as a tourist attraction for the region, some attempts at taking-off and landing must be done. The first trial attracts a few people!
The descent along the twelve degree sloped runway is a bit rough for the glider’s low wings, as there are some bushes that will have to be trimmed!
The weather is nice and very warm. The only potential problem is the mountain ahead.
Finally, the pilot cuts the link. He is free to go!
The glider flies silently over the lush area of Papua New Guinea.
Using the rising warm air currents, the glider gains altitude.
Why not a pass over Fane?
Here is another isolated village alongside a mountain.
A last steep turn in order to realign for the approach at Fane Parish.
The airbrakes are out and the speed reasonable. The sloped runway is just ahead, on top of the mountain to the right.
Keeping just enough altitude on the approach to be safe.
Now that the landing is a sure thing, it is time to use the airbrakes again to slow down as much as possible.
Keeping in mind that this mountain airfield as a good slope, it is better to have a bit of extra speed. Nobody likes to stall a few feet over a runway!
What an experience it was! But I’ll need some help to pull the glider up the slope!
The virtual flight was great, the view was worth every penny, and I think that this could become a new touristic attraction for the region and the more wealthy visitors…
There is no aircraft in the sky around the Port Moresby Jacksons (AYPY) virtual airport today. No aircraft in the sky but one, a medevac flight.
The winds blow from 240 degree at 50G60 kts and the runways are oriented 14/32. It is way above the maximum crosswind authorized for any aircraft.
But the Shrike Commander’s crew cannot wait until the wind calms down. They must land in the next few minutes in order to save a patient’s life.
As there is no traffic around, the captain has told ATC he intends to do a safe, efficient but non-standard approach.
Arriving straight across the runways, facing the wind, the crew intends to land the aircraft a few feet short of a hangar. The captain requests that someone opens the hangar doors right away. The captain will terminate the approach in the hangar, protected from the wind.
It is safer to arrive facing the wind and immediately enter the hangar, straight ahead. No taxiing with a 60 knots crosswind.
Useless to say, ATC has already refused the request. But the pilot is the only one who decides of the best landing surface, for the safety of the passengers and himself. He proceeds with the approach after having clearly indicated which path will be followed.
The main problem for the approach is the low level mechanical turbulence caused by the gusty 60 kts winds.
If ATC wants to file a complaint, now is a good time to take a picture of the aircraft and its registration to support the case.
The actual ground speed of the airplane is around 20 kts.
The steady high wind speed is actually safer for the crew than if the winds were 240 at 35G60.
Still a bit above the runway and with a 10-20 knots ground speed. The airspeed indicator shows the strength of the wind itself plus the ground speed.
Floating like a hot air balloon or almost!
As the aircraft touches the ground, it stops almost immediately. It is necessary to apply power to reach the hangar, as you can see with the white trail on the ground behind the aircraft.
In real life, the touch-down would have had to be as soon as the asphalt start since the presence of the hangar lowers the wind speed a bit.
A few seconds after the touch-down, the aircraft is in the hangar, protected from the wind, and both doctor and patient can quickly head out to the hospital.
Once in the hangar, the winds were adjusted to zero, which is kind of logical, unless the opposite wall is missing!
It was now time to brace for another storm, which was the inquiry that would possibly follow the landing!
(P.S.: Tim Harris and Ken Hall were the creators of this virtual Port Moresby Jacksons international airport) and it is sold by ORBX. The aircraft is sold by Carenado).
Wanting to add an almost impossible flight in the “unhinged virtual flights” section of my web site, I tried a flight with the Blue Angels C-130 Hercules (Captain Sim) where the aircraft gradually lost all of its engines.
I am aware that the Blue Angels mechanics are real professionals, so I assumed that the engine failures were caused by an unknown reason.
The take-off was made without problem from the Canadian High River (CEN4) airport. This free airport was designed by Vlad Maly and is available through ORBX. The aircraft leaves the 4150 feet runway heading to the Coeur d’Alène airport (KCOE) in United States.
Eventually, the first engine stops. This does not cause a problem. The propeller is feathered and the gradual climbing continues.
The second engine stops. The pilot must forget the initial destination. Bonners Ferry (65S) becomes the alternate airport since the 4000×75 feet runway is good enough for the C-130.
The third engines gives way. A slow descent starts. Bonners Ferry is not very far. The airport is at an altitude of 2337 ft asl.
The aircraft is volontarily flown at a higher altitude than what would normally be requested for a normal approach, just in case the fourth engine stops. When three engines stop after the same refueling, the pilot has the right to think that what feeds the fourth engine can also cause problems.
The highest mountains are now behind the aircraft.
The Bonners Ferry (65S) runway is in sight.
The fourth engine stops. The flaps will not be functional for the landing.
From now on, the pilot should save the virtual flight a few times since it is possible that several trials will be necessary to glide sucessfully to the airport. This is the fun of virtual flight.
The C-130 Hercules has become a big glider. When the speed is maintained, the aircraft loses more 1000 feet per minute. It is easier to feel the aircraft’s inertia.
The wheels will be brought out only when necessary since the gear adds a lot of drag.
From the position indicated in the picture below, it is impossible to arrive to the airport in a straight line: the aircraft will glide over the airport. In the picture, the aircraft seems to be on a good path for landing, but it is an illusion caused by the wide-angle format chosen for the screen capture.
The aircraft is definitely too high. It is impossible to use the flaps to increase the rate of descent.
One must choose between 1) sideslips 2) a 360 degree turn to lose altitude or 3) multiple steep turns perpendicular to the runway to increase to distance to the airport.
What would you choose?
There is no universal method. The 360 degree turn is riskier but can prove efficient. An Airbus A330-200 flown by Quebecer Robert Piché that had lost all of its engines landed successfully in the Açores in 2001 after attempting a last minute 360 degree turn to lose altitude. But here, I did not believe there was enough altitude to safely complete the turn and reach the runway.
A few steep turns were made to extend to ride to the airport. Why steep turns? In order to avoid getting closer to the airport before an acceptable altitude was reached. This method helped keep an eye on the runway at all times to verify if the slope to the airport was still acceptable.
I tried the three methods, always starting from the same saved flight (photo 10). After several sideslips, the aircraft was always approaching the airport too quickly. There was not enough time to lose altitude. The final speed always happened to be too high to stop a C-130 without flaps or thrust reversers.
The 360 degree turn, be it right or left, with different angles and a reasonable speed, always incurred a loss of altitude that brought the aircraft 200 to 300 feet short of the threshold.
Finally, after a few steep turns, the aircraft was positioned on final with the appropriate speed and altitude.
A few last seconds adjustments, to reposition the aircraft in the center of the runway.
At 140 kts, but without any reverse thrust, the whole runway should be necessary to stop the aircraft.
The landing was smooth and the aircraft stopped short of the threshold.
For an unknown reason, the anemometer was still indicating a 10 kts airspeed, even when the aircraft had stopped.
Try such a flight in the virtual mode. The worst that can happen is that you have fun!
Manually flying a huge aircraft like the MD-11F to make a virtual landing in Innsbruck surely will be fun for most flight simulation enthusiasts. Since the Innsbruck airport and its surroundings have been redesigned under ORBX Innsbruck, the immersion feeling is total. The landscape is absolutely fantastic.
Start by taking-off from runway 08. Anybody standing near the fence at the end of the runway will feel the blast. Then, gain enough altitude to be able to do a 180 degree turn to realign the aircraft for runway 26.
Make sure to activate the “air turbulence” option on your virtual weather engine, since an approach near the mountains in Innsbruck generates enough turbulence to make your approach more difficult. The pilot must also, for this exercise, deal with the actual winds even if they do not favor runway 26.
The flaps must be adjusted to 50 degrees for the MD-11F. Insure that the “Autopilot” function is set at “OFF”. The intensity of the automatic breaking is chosen according to the actual winds, the aircraft’s cargo load and the altitude of the airport. The margin of manoeuver with regards to the approach speed is not very large. I tried to maintain 150 kts.
The Innsbruck runway is 2000 meters long. There is not much leeway for the MD-11F.
Once on the ground, you must continue until the end of runway 26 in order to do a 180 degree turn. There is just enough space for the MD-11F.
As you can see in the image below, looking at the windsock, the landing was made with a good tailwind.
The airport is superbly represented and a parking space is already reserved for bigger aircrafts. Employees are waiting for your arrival.
You can try landing with any other big carrier if you do not already own a PMDG virtual MD-11. If you would like to acquire this aircraft, you will realize that it is no longer offered by PMDG, at least for now. Try to put some pressure on the company so that they restart offering the aircraft on which they have put in so much effort. A message on their Facebook site should show your interest: PMDG
If you would like to see an exceptional two hour aviation video on a real flight that lasted ten days across the world, there is none better than the one made by PilotsEYE.tv: Lufthansa Cargo MD-11F in Quito
You witness part of the crew’s planning for a landing on the old Quito runway, in Ecuador. The airport’s altitude is so high that the MD-11F margin of manoeuver is extremely limited. Make sure to own a player that can decode European videos.
The picture above shows a virtual MD-11 aircraft with the VASP livery over Sao Paulo. In the flight simulator, I positioned it on final for the Guarulhos international airport in Brazil (IATA: GRU, ICAO: SBGR). This MD-11 was created by PMDG.
The landscape is modelized by ORBX and is made of overlapping layers of their different products in order to achieve this final aspect. There is first FTX Global Base Pack, then FTX Global openLC South America and FTX Global Vector. The last touch is added through FTX Global Trees HD, but it is not really visible here due to the late hour.
The two pictures above show a MD-11 just airborne from Innsbruck, in Austria. The landscape of that region, in real life or virtual mode, is absolutely stunning. I am essentially using the FSX flight simulation platform for now, but I am always monitoring the progress made with Aerofly FS2. The virtual cloud textures for the three pictures are modelized by Rex Simulations and the weather engine used for the flights was FSGRW.
The MD-11 is an extremely interesting aircraft to fly in the flight simulation mode but it seems that PMDG is not bringing the aircraft up to date to follow the evolution of Microsoft operating systems. It has not been modified neither to work with P3D or other virtual flight platforms. Nevertheless, if customers start expressing their interest in that aircraft, I am convinced that PMDG would allow a bit more research in order to bring that MD-11 with today’s standards of flight simulation ( https://www.facebook.com/pmdgsimulations ).
The documentation offered for the MD-11 by PMDG is really complete. All the articles written in the PC Pilot magazine on how to fly the aircraft are also still available today in only one download.
Here are a few modified screen captures of a recent virtual flight made with the Captain Sim’s B-52.
The high quality of the modelized clouds and of the landscape in the background helped create screen captures that were even more realistic. FSX was the flight simulation platform used for the flight. REX Simulations made the virtual cloud textures.
The landscape is a creation of ORBX. At the base of the three screen captures were the following ORBX products: FTX Global Base Pack, FTX Global Vector, FTX Global Open LC North America, FTX Global Trees HD and NA Southern California. The time for the flight was early in the morning.
In the picture below, a few modifications were made using Photoshop to induce a feeling of speed. When comes the time to modify the screen capture of a virtual aircraft with an image editing software, the same rules apply as for a normal picture: moderation gives better results.
The sound of the Boeing B-52’s eight engines is quite impressive. Despite the enormous power available for take-off, the flight simulation enthousiast cannot simply apply full power and hope that the military jet will get airborne. By the book procedures have to be followed, otherwise there won’t be any take-off. A parachute can be deployed when landing for a better visual effect, but the flight simulator will not include it in its calculations for the required landing and breaking distance.
The following pictures show a virtual flight in United States. The trip is from KBLU ( Blue Canyon-Nyack) to Limberlost Ranch (CA21) then to Gansner Field (201). Landing and taking-off from Limberlost Ranch is a nice challenge.
For this flight simulation, I used the FSX flight simulator, the Carenado Cessna C-207 equipped with bush tires and REX clouds.
Airborne from KBLU.
Enroute from KBLU (5284 ft ASL) to Limberlost Ranch and it’s 1700 ft grass runway (1650 ft ASL and about 23 NM east of KBLU), you pass by the Nevada County airport (O17) that has also received a special treatment from ORBX.
It might be necessary to fly over the Limberlost Ranch airport before starting an approach, so that you have an idea of what to expect on final.
Limberlost Ranch has a sloped runway (in fact, a multiple slope runway). Part of it is asphalted, but most of it is grass. You make the approach for the grass section. Note that there is a fence on the side at the beginning of the runway. The virtual aircraft should not touch the field before it has passed the fence (for more realism).
With a bit of crosswind, taking-off from this short runway can be demanding. The aircraft feels really sloppy (and I mean it) and behaves more like a boat than a plane during the acceleration to get airborne. It is essential to avoid the line of trees on the left side of the runway. A bit of flaps is required as it is the norm for soft runway operations. Careful but essential use of the rudder will also make your take-off a success.
Enroute to Gansner Field.
Gansner Field is about 41 nm north of KBLU. The virtual airport is very well made and nestled in a valley. Coming in from KBLU, you need to pass 6000 ft mountains before diving for that 3419 ft asl asphalt runway.
The fully enjoy those virtual flights, it is suggested that you install the different layers of Orbx products (Global, Vector, Open LC) as well as the KBLU virtual scenery.
Have a good flight!
For more articles on flight simulation on my web site, click on the following link : Flight simulation
This virtual Cessna 185F is seen here on final for Roberts Lake (CRL8) in Ontario. Due to the prevailing wind at the time of flight, I had to do the approach overflying the Parry Sound (CNK4) airport runway. Real weather was downloaded through internet.
As you can see, there was some bad weather near the airport. Considering that nightime was coming, it was the last flight of the evening.
C-GNWA belongs to the North-Wrights Airways Ltd company, based in Norman Wells, Northwest Territories. This particular Cessna 185F was built in 1977.
The flight simulation platform used to do the flight was FSX. The virtual clouds are a combination of REX (Texture Direct with Soft Clouds) and Cumulus X. The screen capture was slightly edited using an image editing software in order to optimize the contrasts and brightness.
Vlad Maly, who died in 2016, was the creator of this virtual scenery combining Parry Sound and Roberts Lake. It is sold by Orbx.
For more articles on flight simulation on my web site, click on the following link : Flight simulation
For this flight, you will need the Antarctica X flight simulation software made by Aerosoft.
The maintenance of BAS Twin Otters and their Dash-7 is done in Calgary, Canada, and head to Antarctica during the austral summer, between October and March. So if you want to try a flight simulation with a Twin Otter or a Dash-7 from Chile to Antarctica, pick one of those months as it is more realistic.
Since it would be a bit long to make all the virtual flights from Canada to Antarctica, I chose to do the last three legs to see what the landscape looks like.
A Twin Otter is normally approved for a maximum take-off weight of 12,500 pounds. But with skis weighing 800 pounds and additional fuel required to fly longer legs, BAS (British Antarctic Survey) has arranged to have their Twin Otters approved at 14,000 pounds. Even at this weight, the aircraft could still operate on one engine.
First, the aircraft departs La Florida airport (SCSE) in Chile, after a mandatory fuel stop before its next destination, the El Tepual de Puerto Montt airport (SCTE), also in Chile.
This virtual flight with the Twin Otter last about 4:25 hours (696 nm) with a heading of 185 degrees.
For the screen captures, FTX Global, FTX Vector and Pilot’s FS Global 2010 were installed. Orbx has also reworked the original El Tepual de Puerto Montt airport to include some people, aircrafts and new buildings. It makes for a more interesting destination.
The next flight is from the El Tepual de Puerto Montt airport (SCTE) to Punta Arenas (SCCI), both in Chile.
This flight, made low across the Andes, absolutely requires good weather. You will have to climb to 17,000 feet to make the direct route between the airports.
There are often spectacular views available to the virtual pilot. Yes, the BAS Twin Otter is flown by only one pilot, but there is always somebody else accompanying him.
Don’t forget to lean the mixture during the climb. Also use some additional oxygen (!!) if you don’t want to start singing and flying in circles after a while. Again, pay attention to the mixture during the descent, considering that you will be losing close to 17,000 feet.
The Punta Arenas airport, straight from FSX, is not an interesting airport to look at. It is a very bare airport, with just a single building and a VOR.
But since the BAS pilot do that mandatory leg just before heading to Antarctica, I chose not to change the route. The general direction for the flight to Punta Arenas was 164 degrees and the duration approximately 4:28 hours. You can obviously accelerate the process once the aircraft is established at its flying altitude.
The last flight is from Punta Arenas, Chile, to Rothera, Antarctica.
The Twin Otter will take between six and seven hours on an average heading of 162 degrees to cover the distance between Punta Arenas (SCCI) and Rothera (EGAR).
The runway at Rothera is made of gravel and is 2953 feet long. That is plenty for the Twin Otter and the DASH-7. Before you make the flight, go into the aerosoft/Antarctica X file in your flight simulator and click on the “LOD 8.5” option (the default is at LOD 4.5). It will give you much better details when you are approaching Antarctica.
The Airliner World magazine had an excellent article on the BAS operations in Antarctica in its March 2017 edition. It included plenty of interesting pictures and detailed explanations on what is expected from pilots and personnel working for BAS. I compared the Rothera virtual airport with the real one through the available pictures in Airliner World and was pleasantly surprised with the level of accuracy of the details.
The BAS always prepares itself for the worst: “[It] carries parts valued at around $5m, including a replacement engine for each aircraft, spare props and undercarriage components”.
“A new development for the Air Unit has been its work with the RAF, using C-130 Hercules transports to airdrop supplies into the field. They fly from Punta Arenas and drop fuel to support our science programmes on the Ronne Ice Shelf. […] It is all part of their training system and the accuracy they drop to is very impressive. They might drop 250 drums, think how many Twin Otter trips that would have been for us (48 or more than 400 flying hours)”.
Aerosoft has made an excellent job in replicating the buildings in Rothera, BAS’s main research station in Antarctica. The biggest hangar can accommodate three Twin Otters and a Dash-7 altogether.
When your flight is over, do not forget to change the settings back to LOD 4.5 for Antarctica in your aerosoft/Antarctica X files.
Alex Geoff, the ORBX Block Island (KBID) virtual airport designer, asked flight simulator enthousiasts to try to operate the biggest aircraft possible on that airport ‘s 2502 ft runway.
Naturally, we are talking about a virtual flight. You must then forgive the landing of an aircraft which, in real life, would destroy the runway. You also have to disregard the fact that numerous trees would have to be chopped if the aircraft would elect to use the taxiway. I was almost forgetting the pilots and airport manager that would have to be fired following the authorized manoeuver.
The context of the flight having been presented, here is the data that will allow flight simulator enthousiasts to replicate the circuit around the Block Island airport with a Virtavia C-17A.
Contrary to the Cessna type aircrafts normally evolving around the airport, the total weight of the canadian military C-17A used for the flight was 405,000 pounds. The fuel was adjusted to 50% in all four tanks. Both pilots agreed to skip lunch in order to avoid adding any extra weight to the beast…
Flaps were adjusted to 2/3. I backed the aircraft to the beginning of the runway, applied the brakes, applied full throttle, waited for maximum regime, released the brakes and used ground effect to lift the aircraft before it was too late. The take-off was done on runway 10 with a 12 kts and 70 degree crosswind.
Then, four right turns were made : 190°, 280°, 010° and 100°. During the flight, the aircraft’s altitude never went above 2000 feet.
Wheels and flaps were brought down in base so that I did not have to make serious adjustments on final.
The speed eventually went down to 128 kts and, while the aircraft was still about two feet in the air, I used the airbrakes. The thrust reversers were fully activated two feet before touch-down (continued pressure on F2) since they take time to rev up. That is not necessarily the proper way to do it and you can wait one more second, until the wheels touch the runway, to use the reversers. The main gear touched at the very beginning of the runway and maximum breaking was then applied.
It was possible to exit on the taxiway without having to back-track on the runway. The environment always coming second, some trees were cut so that there were no contacts with the aircraft.
If you decide to try it out, think of saving the flight when you are on final, in case you are not satisfied with your performance during the landing (scrapped aircraft, destroyed houses and vehicles in the neighborhood, burned forest at the end of runway 10, collateral victims, etc.).
Good luck!
For other challenging virtual flights, head towards the flight simulation section of the present web site.
For more articles on flight simulation on my web site, click on the following link : Flight simulation