Categories
Flight Simulation

The PMDG MD-11 and flight simulation

A Brazilian VASP MD-11 aircraft is on final for the Guarulhos international airport in Sao Paulo.
A Brazilian VASP MD-11 aircraft is on final for the Guarulhos international airport in Sao Paulo.

The picture above shows a virtual MD-11 aircraft with the VASP livery over Sao Paulo. In the flight simulator, I positioned it on final for the Guarulhos international airport in Brazil (IATA: GRU, ICAO: SBGR). This MD-11 was created by PMDG.

The landscape is modelized by ORBX and is made of overlapping layers of their different products in order to achieve this final aspect. There is first FTX Global Base Pack, then FTX Global openLC South America and FTX Global Vector. The last touch is added through FTX Global Trees HD, but it is not really visible here due to the late hour.

A Martinair virtual cargo MD-11 is airborne from the Innsbruck airport in Austria.
A Martinair virtual cargo MD-11 is airborne from the Innsbruck airport in Austria.
The mountains surrounding the Innsbruck airport are used as a background for this screen capture of a virtual Martinair Cargo MD-11.
The mountains surrounding the Innsbruck airport are used as a background for this screen capture of a virtual Martinair Cargo MD-11.

The two pictures above show a MD-11 just airborne from Innsbruck, in Austria. The landscape of that region, in real life or virtual mode, is absolutely stunning. I am essentially using the FSX flight simulation platform for now, but I am always monitoring the progress made with Aerofly FS2. The virtual cloud textures for the three pictures are modelized by Rex Simulations and the weather engine used for the flights was  FSGRW.

The MD-11 is an extremely interesting aircraft to fly in the flight simulation mode but it seems that PMDG is not bringing the aircraft up to date to follow the evolution of Microsoft operating systems. It has not been modified neither to work with P3D or other virtual flight platforms. Nevertheless, if customers start expressing their interest in that aircraft, I am convinced that PMDG would allow a bit more research in order to bring that MD-11 with today’s standards of flight simulation ( https://www.facebook.com/pmdgsimulations ).

The documentation offered for the MD-11 by PMDG is really complete. All the articles written in the PC Pilot magazine on how to fly the aircraft are also still available today in only one download.

Categories
Flight Simulation

The Captain Sim’s B-52 in flight simulation

Here are a few modified screen captures of a recent virtual flight made with the Captain Sim’s B-52.

Captain Sim's virtual B-52 aircraft in southern California
Captain Sim’s virtual B-52 aircraft in southern California

The high quality of the modelized clouds and of the landscape in the background helped create screen captures that were even more realistic. FSX was the flight simulation platform used for the flight.  REX Simulations made the virtual cloud textures.

The landscape is a creation of ORBX. At the base of the three screen captures were the following ORBX products: FTX Global Base Pack, FTX Global Vector, FTX Global Open LC North America, FTX Global Trees HD and NA Southern California. The time for the flight was early in the morning.

Virtual clouds created by REX. FSX flight simulation platform.
Virtual clouds created by REX. FSX flight simulation platform.

In the picture below, a few modifications were made using Photoshop to induce a feeling of speed. When comes the time to modify the screen capture of a virtual aircraft with an image editing software, the same rules apply as for a normal picture: moderation gives better results.

A virtual B-52 at high speed and low altitude in Southern California.
A virtual B-52 at high speed and low altitude in Southern California.

The sound of the Boeing B-52’s eight engines is quite impressive. Despite the enormous power available for take-off, the flight simulation enthousiast cannot simply apply full power and hope that the military jet will get airborne. By the book procedures have to be followed, otherwise there won’t be any take-off. A parachute can be deployed when landing for a better visual effect, but the flight simulator will not include it in its calculations for the required landing and breaking distance.

Categories
Flight Simulation

The regional jet CRJ-900ER and CRJ-700ER by Digital Aviation and Aerosoft

The reason for the delays and the positive side for the consumers

A virtual Bombardier regional jet CRJ-900ER (Aerosoft) with the Alaska Airlines colors is climbing after its departure from the Valdez virtual airport in Alaska (ORBX).
A virtual Bombardier regional jet CRJ-900ER (Aerosoft) with the Alaska Airlines colors is climbing after its departure from the Valdez virtual airport in Alaska (ORBX).

Digital Aviation & Aerosoft have finally completed their long awaited project to make a virtual CRJ-900ER and CRJ-700ER Bombardier regional jets. Months later than expected, the flight simulation enthusiasts can now try those two new virtual aircrafts. The CRJ is mostly used to link smaller airports and remote areas to the main hubs. The aircraft can rapidly reach its cruising altitude and stay there a long time, but it is not intended to be a really fast aircraft.

The company explains that, since the beginning, it had underestimated the complexity of the project and, because of ongoing delays, ended up having to catch up with the competition. In order to offer a superior product than the competition, Digital Aviation and Aerosoft had to review what it initially considered as an almost completed project.

Virtual CRJ-700ER aircraft (Aerosoft) with the Alaska Airlines colors airborne from the Valdez virtual airport (ORBX)
Virtual CRJ-700ER aircraft (Aerosoft) with the Alaska Airlines colors airborne from the Valdez virtual airport (ORBX)

The CRJ-900ER and CRJ-700ER had their exterior almost completely redone; the consumer now ends up with a much better looking aircraft. The project manager says that it is only due to the patience and kindness of potential customers that the project was saved. It pays to be nice!

The first flight with the CRJ

Virtual CRJ-900ER aircraft with the Air Nostrum colors departing the St. Maarten international airport (Fly Tampa St.Maarten)
Virtual CRJ-900ER aircraft with the Air Nostrum colors departing the St. Maarten international airport (Fly Tampa St.Maarten)

For the first flight, the manual recommends to first choose and activate one of the default FSX aircraft with the engine running. The pilot then selects the CRJ of his choice. It seems that doing so will prevent a lot of problems.

The virtual 2D cockpit

The virtual 2D cockpit helps save a few FPS. An easy access to the different sections of the cockpit is available since it is divided in several logical panels numbered from 1 to 9.

Navigation

The virtual pilot has access to an updated NavDataPro (May 2017) database for air navigation. It is the world’s most used database in aircraft. The aircraft is also compatible with the popular Navigraph database.

How does a standard computer deals with the new CRJ?

Virtual CRJ-900ER aircraft (Aerosoft) with the U.S. Airways colors airborne from the Denver International airport (Flightbeam Studios)
Virtual CRJ-900ER aircraft (Aerosoft) with the U.S. Airways colors airborne from the Denver International airport (Flightbeam Studios)

I have flown both aircrafts on several virtual airports like St. Maarten (Fly Tampa St. Maarten), Montreal international (Fly Tampa Montreal), Denver international (Flightbeam Studios) and Valdez (ORBX) without problems with regards to the computer’s processors and FPS. It was certainly out of question to try to land at the Courchevel airport (LLH Creations), with its short sloped runway, but a low pass at high speed caused no stutters.

A virtual CRJ-700ER aircraft (Aerosoft) with the Air France HOP colors is in flight over the Courchevel virtual airport in France (LLH Creations)
A virtual CRJ-700ER aircraft (Aerosoft) with the Air France HOP colors is in flight over the Courchevel virtual airport in France (LLH Creations)

Flying the CRJ at low speed

The CRJ offers a good margin of manoeuver when it comes to flying at low speed. But due to the position of the engines, the aircraft’s nose will raise rapidly when the throttle is brought back to idle. In a constant and progressive descent, that does not cause a problem. But if the manoeuver is done on short final when the aircraft is still above 50 feet, the rapid change in the aircraft’s attitude could induce a stall.

The air brakes

One cannot rely too much on the air brakes to slow down the CRJ. They have limited efficiency, both for the virtual and the real aircraft.

Floating tendency

If the aircraft arrives over the threshold at a higher speed than recommended, it will float for a long distance before finally touching down.

Landing and take-off distances

A virtual CRJ-900ER aircraft with the Air Canada colours (Aerosoft) is approaching the Montreal Pierre-Elliott-Trudeau virtual airport (Fly Tampa Montreal)
A virtual CRJ-900ER aircraft with the Air Canada colours (Aerosoft) is approaching the Montreal Pierre-Elliott-Trudeau virtual airport (Fly Tampa Montreal)

The CRJ-900 and CRJ-700 operate on relatively short runways. The CRJ-700 needs 5040 feet for take-off (at maximum weight) and landing, under the standard ICAO conditions. The CRJ-900 requires 6060 feet for take-off and 5260 feet for landing. The maximum range has been established to be around 1300 and 1400 nm.

Managers that facilitate the use of the CRJ

For the CRJ, Digital Aviation & Aerosoft have created managers that allow choosing the number of passengers, cargo, as well as calculating the fuel weight, the center of gravity and the amount of trim required. There is even a FS2 Crew option if desired. Another manager facilitated the addition of liveries.

The flight simulation enthusiasts had been anticipating the arrival of that regional jet for a long time; some did not believe anymore that it would one day become a reality (that includes the company too!). The flight simmers now have access to a world class and high quality regional jet.

For more articles on flight simulation on my web site, click on the following link : Flight simulation

Categories
Flight Simulation

Flying in and out of Limberlost Ranch (CA21)

The following pictures show a virtual flight in United States. The trip is from KBLU ( Blue Canyon-Nyack) to Limberlost Ranch (CA21) then to Gansner Field (201). Landing and taking-off from Limberlost Ranch is a nice challenge.

For this flight simulation, I used the FSX flight simulator, the Carenado Cessna C-207 equipped with bush tires and REX clouds.

Airborne from KBLU.

The Cessna C-207 is airborne from the Blue Canyon-Nyack airport runway
The Cessna C-207 is airborne from the Blue Canyon-Nyack airport runway

Enroute from KBLU (5284 ft ASL) to Limberlost Ranch and it’s 1700 ft grass runway (1650 ft ASL and about 23 NM east of KBLU), you pass by the Nevada County airport (O17) that has also received a special treatment from ORBX.

It might be necessary to fly over the Limberlost Ranch airport before starting an approach, so that you have an idea of what to expect on final.

Over the Limberlost Ranch short and sloped runway
Over the Limberlost Ranch short and sloped runway

Limberlost Ranch has a sloped runway (in fact, a multiple slope runway). Part of it is asphalted, but most of it is grass. You make the approach for the grass section. Note that there is a fence on the side at the beginning of the runway. The virtual aircraft should not touch the field before it has passed the fence (for more realism).

The Cessna C-207 is on final for the Limberlost Ranch sloped runway
The Cessna C-207 is on final for the Limberlost Ranch sloped runway
Landing on the Limberlost Ranch short and sloped grass runway
Landing on the Limberlost Ranch short and sloped grass runway
The Cessna C-207 is parked at Limberlost Ranch for a few minutes
The Cessna C-207 is parked at Limberlost Ranch for a few minutes
Ready for take-off from the Limberlost Ranch runway
Ready for take-off from the Limberlost Ranch runway

With a bit of crosswind, taking-off from this short runway can be demanding. The aircraft feels really sloppy (and I mean it) and behaves more like a boat than a plane during the acceleration to get airborne. It is essential to avoid the line of trees on the left side of the runway. A bit of flaps is required as it is the norm for soft runway operations. Careful but essential use of the rudder will also make your take-off a success.

Aircraft airborne from the Limberlost Ranch runway
Aircraft airborne from the Limberlost Ranch runway

Enroute to Gansner Field.

Over the Gansner Field airport runway
Over the Gansner Field airport runway

Gansner Field is about 41 nm north of KBLU. The virtual airport is very well made and nestled in a valley. Coming in from KBLU, you need to pass 6000 ft mountains before diving for that 3419 ft asl asphalt runway.

The fully enjoy those virtual flights, it is suggested that you install the different layers of Orbx products (Global, Vector, Open LC) as well as the KBLU virtual scenery.

Have a good flight!

For more articles on flight simulation on my web site, click on the following link : Flight simulation

Categories
Flight Simulation

Flight simulation: a Beech Staggerwing over Saskatchewan

Beech Staggerwing aircraft over Saskatchewan, Canada.
Beech Staggerwing aircraft over Saskatchewan, Canada.

The screen capture above represents a Beech Staggerwing virtual aircraft available through the Carenado company, in flight early morning on a winter day over Saskatchewan, Canada.

Houses and the general scenery are a creation of the Orbx company, through their FTX Global Base Pack, FTX Global Vector and FTX Global openLC North America products.

The virtual clouds are a creation of REX Texture Direct and Soft Clouds. There is also an additional touch of drama through the use of Cumulus X. The virtual flight platform used was FSX.

In April 2017, Orbx again released new improved virtual airports for North and South America, available for free for flight simulation enthousiasts already using their commercial products. That was one more reason to go flying in Saskatchewan!

For more articles on flight simulation on my web site, click on the following link : Flight simulation

Categories
Flight Simulation

Flight simulation: the North-Wright Airways Ltd Cessna 185F C-GNWA

Virtual Cessna 185F C-GNWA on final for Roberts Lake (CRL8) in Ontario
Virtual Cessna 185F C-GNWA on final for Roberts Lake (CRL8) in Ontario

This virtual Cessna 185F is seen here on final for Roberts Lake (CRL8) in Ontario. Due to the prevailing wind at the time of flight, I had to do the approach overflying the Parry Sound (CNK4) airport runway. Real weather was downloaded through internet.

As you can see, there was some bad weather near the airport. Considering that nightime was coming, it was the last flight of the evening.

C-GNWA belongs to the North-Wrights Airways Ltd company, based in Norman Wells, Northwest Territories. This particular Cessna 185F was built in 1977.

The flight simulation platform used to do the flight was FSX. The virtual clouds are a combination of REX (Texture Direct with Soft Clouds) and Cumulus X. The screen capture was slightly edited using an image editing software in order to optimize the contrasts and brightness.

Vlad Maly, who died in 2016, was the creator of this virtual scenery combining Parry Sound and Roberts Lake. It is sold by Orbx.

For more articles on flight simulation on my web site, click on the following link : Flight simulation

Categories
Flight Simulation

Flight simulation: a FedEx MD-11 inbound for the Telluride airport (KTEX) (FSX)

The flight simulator enthousiast will have fun trying this short flight ( 14 minutes) from the Eagle County virtual airport (KEGE) to the Telluride virtual airport (KTEX). The virtual flight, using FSX, was made during winter, on January 8th. The shots below represent an idea of what is visible while flying toTelluride. Use 14,000 feet, it should do it…

FedEx MD-11 on the take-off run at the Eagle County airport (KEGE) (FSX)
FedEx MD-11 on the take-off run at the Eagle County airport (KEGE) (FSX)
FedEx MD-11 airborne from the Eagle County airport (KEGE) (FSX)
FedEx MD-11 airborne from the Eagle County airport (KEGE) (FSX)
FedEx MD-11 between Eagle County airport (KEGE) and Telluride airport (KTEX) (FSX)
FedEx MD-11 between Eagle County airport (KEGE) and Telluride airport (KTEX) (FSX)

There are lots of beautiful mountains between KEGE and Telluride, and also some unpredictable weather…

FedEX Md-11 entering bad weather
FedEX Md-11 entering bad weather

The expected ceiling at Telluride was 8500 ft. On the way to the airport, the clouds and visibility were sometimes obscuring the mountains.

A FedEx MD-11 on a flight Eagle County (KEGE) to Telluride (KTEX) (FSX)
A FedEx MD-11 on a flight Eagle County (KEGE) to Telluride (KTEX) (FSX)

Telluride is a very inviting airport for a MD-11. The 7000 feet runway itself does not represent a big challenge, although its 100 feet are a bit narrow: this aircraft would normally require a 150 feet wide landing surface.

The virtual VFR approach made with the MD-11 was the most expensive way to do the trip, since it required a fly-by and a 270 degree turn to the right to align with runway 09.

FedEx MD-11 flies by the Telluride airport KTEX) (FSX)
FedEx MD-11 flies by the Telluride airport KTEX) (FSX)

The 270 degree turn at a 10-20 degree bank allowed to transit from 14,000 to 10,000 ft without doing anything radical. Just a turn while descending and gradually loosing speed to arrive at around 160 kts on final. The aircraft was now installed on long final, with flaps set at 50 degrees.

A FedEx MD-11 on long final runway 09 for the Telluride airport (KTEX) (FSX)
A FedEx MD-11 on long final runway 09 for the Telluride airport (KTEX) (FSX)

The high altitude runway’s 9078 feet msl elevation meant the pilots dealt with lower air density and heavy weight when approaching and, as such, the airspeed had to be adjusted accordingly to prevent stalling on final.

A FedEx MD-11 on final runway 09 for the Telluride airport (KTEX) (FSX)
A FedEx MD-11 on final runway 09 for the Telluride airport (KTEX) (FSX)

Here is a view from the Telluride tower…

View from the Telluride airport (KTEX) (FSX) of a FedEx MD-11 on final for runway 09
View from the Telluride airport (KTEX) (FSX) of a FedEx MD-11 on final for runway 09

Now with a view like that, you would not consider coming in IFR…!

A FedEx MD-11 inbound from KEGE on final for runway 09 at the Telluride airport (KTEX) (FSX)
A FedEx MD-11 inbound from KEGE on final for runway 09 at the Telluride airport (KTEX) (FSX)

To prevent an overshoot and some additional expenses in fuel (which are already skyrocketing), an optimal approach was required.

Most accidents with the MD-11 happen when the pilot pushes on the stick when there is a rebound with the nose wheel, thus creating an even stronger rebound. When there is a rebound, there is no need to push on the stick, just wait and the aircraft sets itself quickly.

A FedEx MD-11 over the threshold runway 09 at the Telluride airport (KTEX) (FSX)
A FedEx MD-11 over the threshold runway 09 at the Telluride airport (KTEX) (FSX)

Now with max breaking and thrust reversers…

A FedEX MD-11 slowing down at the Telluride airport (KTEX) (FSX)
A FedEX MD-11 slowing down at the Telluride airport (KTEX) (FSX)

The MD-11 can easily turn at the first taxiway at Telluride. But in order to capture a wider view of the airport, I exited at the last taxiway (again adding to the already enormous expense in fuel…)

A FedEX Md-11 is exiting runway 09 at the Telluride airport (KTEX) (FSX)
A FedEX Md-11 is exiting runway 09 at the Telluride airport (KTEX) (FSX)

The employee on the ramp was worried that the MD-11 lower winglet would scratch N900SS while taxiing. But there was plenty of space (11 inches)…

A FedEX Md-11 is taxiing on the ramp at the Telluride airport (KTEX) (FSX)
A FedEX Md-11 is taxiing on the ramp at the Telluride airport (KTEX) (FSX)

The MD-11 was parked temporarily in a spot needed by every aircraft. It was necessary to unload quickly the precious cargo and get out of the way.

Temporary parking for a FedEx MD-11 at the Telluride airport (KTEX) (FSX)
Temporary parking for a FedEx MD-11 at the Telluride airport (KTEX) (FSX)

Some expert handling would be needed to help move back that MD-11 close to the runway. But that was the Telluride’s airport manager problem and he had promised he would have something ready!

FedEx Md-11 parked at the Telluride airport (KTEX) (FSX)
FedEx Md-11 parked at the Telluride airport (KTEX) (FSX)

The virtual scenery from departure to destination is a creation of ORBX programmers and the virtual MD-11 is made by PMDG Simulations (I am not sure it works with P3D though). For the weather, I used REX Simulations as the weather engine and REX and Cumulus X for the cloud textures. (Edit: PMDG does not support it’s MD-11 anymore).

For other challenging virtual flights, head towards the flight simulation section of my web site, under “challenging virtual flights”: there is something for everyone!

For more articles on flight simulation on my web site, click on the following link : Flight simulation

Categories
Flight Simulation

Flight simulation (FSX): a C-17A at the Block Island airport (KBID) in USA

Alex Geoff, the ORBX Block Island (KBID) virtual airport designer, asked flight simulator enthousiasts to try to operate the biggest aircraft possible on that airport ‘s 2502 ft runway.

Canadian military aircraft C17-A ready for take-off runway 10 at the Block Island (KBID) virtual airport in United States (FSX)
Canadian military aircraft C17-A ready for take-off runway 10 at the Block Island (KBID) virtual airport in United States (FSX)

Naturally, we are talking about a virtual flight. You must then forgive the landing of an aircraft which, in real life, would destroy the runway. You also have to disregard the fact that numerous trees would have to be chopped if the aircraft would elect to use the taxiway. I was almost forgetting the pilots and airport manager that would have to be fired following the authorized manoeuver.

The context of the flight having been presented, here is the data that will allow flight simulator enthousiasts to replicate the circuit around the Block Island airport with a Virtavia C-17A.

Contrary to the Cessna type aircrafts normally evolving around the airport, the total weight of the canadian military C-17A used for the flight was 405,000 pounds. The fuel was adjusted to 50% in all four tanks. Both pilots agreed to skip lunch in order to avoid adding any extra weight to the beast…

Flaps were adjusted to 2/3. I backed the aircraft to the beginning of the runway, applied the brakes, applied full throttle, waited for maximum regime, released the brakes and used ground effect to lift the aircraft before it was too late. The take-off was done on runway 10 with a 12 kts and 70 degree crosswind.

Canadian military aircraft C17-A airborne runway 10 at the Block Island (KBID) virtual airport in United States (FSX)
Canadian military aircraft C17-A airborne runway 10 at the Block Island (KBID) virtual airport in United States (FSX)

Then, four right turns were made : 190°, 280°, 010° and 100°. During the flight, the aircraft’s altitude never went above 2000 feet.

Canadian military aircraft C17-A turning downwind runway 10 at the Block Island (KBID) virtual airport in United States (FSX)
Canadian military aircraft C17-A turning downwind runway 10 at the Block Island (KBID) virtual airport in United States (FSX)

Wheels and flaps were brought down in base so that I did not have to make serious adjustments on final.

Canadian military aircraft C17-A turning base runway 10 at the Block Island (KBID) virtual airport in United States (FSX)
Canadian military aircraft C17-A turning base runway 10 at the Block Island (KBID) virtual airport in United States (FSX)
Canadian military aircraft C17-A on long final runway 10 at the Block Island (KBID) virtual airport in United States (FSX)
Canadian military aircraft C17-A on long final runway 10 at the Block Island (KBID) virtual airport in United States (FSX)
Canadian military aircraft C17-A short final runway 10 at the Block Island (KBID) virtual airport in United States (FSX)
Canadian military aircraft C17-A short final runway 10 at the Block Island (KBID) virtual airport in United States (FSX)

The speed eventually went down to 128 kts and, while the aircraft was still about two feet in the air, I used the airbrakes. The thrust reversers were fully activated two feet before touch-down (continued pressure on F2) since they take time to rev up. That is not necessarily the proper way to do it and you can wait one more second, until the wheels touch the runway, to use the reversers. The main gear touched at the very beginning of the runway and maximum breaking was then applied.

Canadian military aircraft C17-A landing at the Block Island (KBID) virtual airport in United States (FSX)
Canadian military aircraft C17-A landing at the Block Island (KBID) virtual airport in United States (FSX)

It was possible to exit on the taxiway without having to back-track on the runway. The environment always coming second, some trees were cut so that there were no contacts with the aircraft.

Canadian military aircraft C17-A exiting runway 10 at the Block Island (KBID) virtual airport (FSX) in United States
Canadian military aircraft C17-A exiting runway 10 at the Block Island (KBID) virtual airport (FSX) in United States
Canadian military aircraft C17-A taxiing at the Block Island (KBID) virtual airport (FSX) in United States
Canadian military aircraft C17-A taxiing at the Block Island (KBID) virtual airport (FSX) in United States

If you decide to try it out, think of saving the flight when you are on final, in case you are not satisfied with your performance during the landing (scrapped aircraft, destroyed houses and vehicles in the neighborhood, burned forest at the end of runway 10, collateral victims, etc.).

Canadian military aircraft C17-A at the Block Island (KBID) virtual airport (FSX) in United States
Canadian military aircraft C17-A at the Block Island (KBID) virtual airport (FSX) in United States

Good luck!

For other challenging virtual flights, head towards the flight simulation section of the present web site.

For more articles on flight simulation on my web site, click on the following link : Flight simulation

Categories
Flight Simulation

Flight Simulation: a B-52 from Montreal to Anchorage, Alaska

Boeing B-52 (FSX) airborne from Montréal Pierre-Elliott-Trudeau Intl to Anchorage, Alaska
Boeing B-52 (FSX) airborne from Montréal Pierre-Elliott-Trudeau Intl to Anchorage, Alaska
Boeing B-52 (FSX) building up speed between Montréal and Anchorage
Boeing B-52 (FSX) building up speed between Montréal and Anchorage

The Boeing B-52 is a Captain Sim creation and the Montreal airport is made by FlyTampa. The remaining scenery is designed by ORBX. Here are few basic informations for those of you who would be tempted to try a flight immediately after the download is completed. For the takeoff: pitot heat, 100% flaps down, YAW SAS Switch Engage, stabilizer trimmed, full throttle within four seconds, climb between 1500 and 2000 ft/min. The climb with flaps down is done at 180 kts. Adjust the thrust so that you have time to bring the flaps in totally; use 230 kts as maximum for zero degree flaps. Once in flight, brake to stop the wheels rotation then bring the gear up (although not before reaching 1000 ft agl).

B-52 at cruising altitude (FSX)
B-52 at cruising altitude (FSX)
Boeing B-52 inbound to Anchorage, Alaska (FSX)
Boeing B-52 inbound to Anchorage, Alaska (FSX)

For a normal descent: (note: keep 20 kts in surplus of the proposed speed when the aircraft is turning). The descent is done at about 240 kts, with airbrakes 4, gear down, throttle to idle. À 220 kts, you may start applying flaps (they take 60 secondes to be fully extended). Once in downwind, use153 kts with airbrakes 4 (for 225,000 lbs). No more than 30 degrees turns. The rollout is done at no more than133 kts.

Boeing B-52 with flaps and gear out on the approach for Anchorage (FSX)
Boeing B-52 with flaps and gear out on the approach for Anchorage (FSX)
Boeing B-52 with runway in sight in Anchorage (FSX)
Boeing B-52 with runway in sight in Anchorage (FSX)
Boeing B-52 and the parachute on the arrival at Anchorage (FSX)
Boeing B-52 and the parachute on the arrival at Anchorage (FSX)

The touchdown with airbrakes full up is done at 110 kts IAS. The drag chute is then deployed (never above 135 kts). Keep a slight angle only, with the rear wheels touching first. When taxiing, turn the YAW switch and the airbrakes to “OFF”. Those are only basic infos. By the way, when the drag chute is deployed, you will not see a difference in the breaking distance; the chute is there only for “graphic” reality.  Have a good flight!

Boeing B-52 leaving the runway in Anchorage (FSX)
Boeing B-52 leaving the runway in Anchorage (FSX)

For more articles on flight simulation on my web site, click on the following link : Flight simulation

Categories
Flight Simulation

Flight simulation: the “Tapini” virtual scenery in Papua New Guinea (FSX)

A virtual DHC-6 Twin Otter enroute for Kokoda after a fire on the right engine while departing Yongai (KGH) in Papua New Guinea PNG (FSX)
A virtual DHC-6 Twin Otter enroute for Kokoda after a fire on the right engine while departing Yongai (KGH) in Papua New Guinea PNG (FSX)

Ken Hall and Tim Harris have created a new virtual scenery for flight simulation enthousiasts. It is called “Tapini” and sold by ORBX. Their penultimate creation, AYPY Jackson’s International, allowed the virtual pilot to fly in very demanding virtual airports along the Kokoda Trail in Papua New Guinea. “Tapini” represents a whole new challenge and I have included several screen captures to show you how the different runways look in this new virtual scenery.

“Tapini”, still in Papua New Guinea, allows the virtual pilot to test his skills on seven new runways located in difficult areas of the Owen Stanley Range. Those airports also constitute a serious test for any aircraft, like in the picture above where damages to the right engine were sustained at Yongai.

A virtual Piper Pacer virtuel is about to land on the Ononge (ONB) curved runway in Papua New Guinea PNG (FSX). (It is possible to see the curve starting on the top of the image)
A virtual Piper Pacer virtuel is about to land on the Ononge (ONB) curved runway in Papua New Guinea PNG (FSX). (It is possible to see the curve starting on the top of the image)

To improve the virtual clouds while flying between the different airports, I used either REX or FSGRW weather engines. The cloud textures and weather effects were improved by one or many of the following products: Cumulus X, PrecipitFX, REX Texture Direct and REX Soft Clouds.

A virtual Dash 7 has just landed in Woitape (WTP) in Papua New Guinea PNG (FSX)
A virtual Dash 7 has just landed in Woitape (WTP) in Papua New Guinea PNG (FSX)

As variety is more fun, and also due to the different challenges created by those runways, the following virtual aircrafts were used: Carenado C-185F,  Lionheart Creations PA-18,  Virtavia DHC-4,  Aerosoft DHC-6 Twin Otter and Milton Shupe DHC-7.

The “Tapini” scenery gives the pilot a choice between the seven following runways:

ASB (Asimba)

A tricky, very short runway near a river.

A DHC-4 Caribou virtual aircraft is on approach for Asimba's sloped runway (ASB) in Papua New Guinea PNG (FSX)
A DHC-4 Caribou virtual aircraft is on approach for Asimba’s sloped runway (ASB) in Papua New Guinea PNG (FSX)

This is a very interesting runway, best done with a STOL aircraft like the Caribou DHC-4. The inhabitants might have to help you clear out some branches along the runway, considering the size of the aircraft. The runway slopes down on take-off, which helps to build up speed.

A DHC-4 Caribou virtual aircraft is on a stopover at Asimba (ASB) in Papua New Guinea PNG (FSX)
A DHC-4 Caribou virtual aircraft is on a stopover at Asimba (ASB) in Papua New Guinea PNG (FSX)
A DHC-4 Caribou virtual aircraft is airborne from Asimba (ASB) in Papua New Guinea PNG (FSX)
A DHC-4 Caribou virtual aircraft is airborne from Asimba (ASB) in Papua New Guinea PNG (FSX)

FNE (Fane)

A one-way, really challenging 12 degree sloped runway, with unpredictable winds.

A De Havilland DHC-7 virtual aircraft on final for the Fane (FNE) airport's sloped runway in Papua New Guinea PNG (FSX)
A De Havilland DHC-7 virtual aircraft on final for the Fane (FNE) airport’s sloped runway in Papua New Guinea PNG (FSX)

The runway sits on top of a hill. It is an amazing experience to land there. No wonder there are a lot of people watching the arrivals and departures.

If you slow down too quickly with an aircraft as big as the DHC-7 on that sloped runway, the twelve degree angle prevents you from moving forward. You must let the aircraft come down the runway very slowly, using the power to control the descent and the rudder to stay aligned on the runway, then apply take-off power for a few seconds to build just enough momentum to get above the hill.

A De Havilland DHC-7 virtual aircraft just finished taxiing uphill on the Fane (FNE) airport's sloped runway in Papua New Guinea PNG (FSX)
A De Havilland DHC-7 virtual aircraft just finished taxiing uphill on the Fane (FNE) airport’s sloped runway in Papua New Guinea PNG (FSX)

To turn the aircraft around, it’s a combination of power and reverse thrust until you clear all the obstacles (any humans venturing behind the aircraft will also be cleared during the operation…).

A De Havilland DHC-7 virtual aircraft is airborne from the Fane (FNE) airport's sloped runway in Papua New Guinea PNG (FSX)
A De Havilland DHC-7 virtual aircraft is airborne from the Fane (FNE) airport’s sloped runway in Papua New Guinea PNG (FSX)

There is a not so friendly man with a rifle watching the airport’s operations. Even the United Nations staff do not stay longer than necessary…

KGH (Yongai)

A very bumpy one-way sloped runway. A real bush aircraft is needed here!

A virtual DHC-6 Twin Otter on approach for the Yongai (KGH) bumpy runway in Papua New Guinea PNG (FSX)
A virtual DHC-6 Twin Otter on approach for the Yongai (KGH) bumpy runway in Papua New Guinea PNG (FSX)

Even with a real bush aircraft, there is a possibility that one of the aircraft’s propellers hits the ground while taxiing on the runway. There are so many deep holes that are hard to see, I can only wish the best of lucks to everyone trying out this airport!

A virtual DHC-6 Twin Otter on the Yongai (KGH) bumpy runway in Papua New Guinea PNG (FSX)
A virtual DHC-6 Twin Otter on the Yongai (KGH) bumpy runway in Papua New Guinea PNG (FSX)

Keep a close watch on the area near the little house at the end of the runway. The DHC-6 was really shaken while turning around for take-off. One of the propellers hit the ground but no problems were detected…until the aircraft was airborne. The fire alarm then went off, just as the aircraft was passing the runway threshold, seconds before flying over a cliff.

A virtual DHC-6 Twin Otter with its right engine on fire is just airborne from the Yongai (KGH) bumpy runway in Papua New Guinea PNG (FSX)
A virtual DHC-6 Twin Otter with its right engine on fire is just airborne from the Yongai (KGH) bumpy runway in Papua New Guinea PNG (FSX)

So much for the planned trip… and it was out of the question to return to Yongai on one engine. I had to pull the handle to stop the fire, feather the prop, cut the fuel where it was not needed anymore then head to the Kokoda airport as it was a sure alternative, having a long runway and an elevation that did not require the use of extra power.

KSP (Kosipe)

A relatively short runway that requires good calculations from the pilot, since it is located high in the mountains.

A virtual Cessna C-185F is enroute to the Kosipe (KSP) airport in Papua New Guinea PNG (FSX)
A virtual Cessna C-185F is enroute to the Kosipe (KSP) airport in Papua New Guinea PNG (FSX)

The Cessna C-185F is a very well suited aircraft for that runway. Make sure not to be too heavy on the brakes, as new C-185 propellers are hard to find in Kosipe. You can land in both directions. Ensure that the mixture is set properly as the airport is above 6300 feet.

A virtual Cessna C-185F is rolling after touching down on the Kosipe (KSP) runway in Papua New Guinea PNG (FSX)
A virtual Cessna C-185F is rolling after touching down on the Kosipe (KSP) runway in Papua New Guinea PNG (FSX)
A virtual Cessna C-185F is airborne from the Kosipe (KSP) runway in Papua New Guinea PNG (FSX)
A virtual Cessna C-185F is airborne from the Kosipe (KSP) runway in Papua New Guinea PNG (FSX)

ONB (Ononge)

A curved and very bumpy runway! For those who like low flying. Make sure you choose the good aircraft here; there is not much manoeuvering area once on the ground.

A Virtual Piper Pacer on approach for the Ononge (ONB) curved runway in Papua New Guinea PNG (FSX)
A Virtual Piper Pacer on approach for the Ononge (ONB) curved runway in Papua New Guinea PNG (FSX)

Ononge looks really scary when you show up on final for the first time. You wonder if the little trail that you see can really be a runway. For that kind of situation, the little Piper Pacer is an excellent aircraft, approaching slowly and braking on a dime. The runway is curved in the middle so you will need a bit of right rudder to keep the aircraft aligned with the runway.

A Virtual Piper Pacer on the Ononge curved runway in Papua New Guinea PNG (FSX)
A Virtual Piper Pacer on the Ononge curved runway in Papua New Guinea PNG (FSX)

I guess all those people with their cargo are waiting for a bigger airplane than mine…

A Virtual Piper Pacer is airborne from the Ononge curved runway in Papua New Guinea PNG (FSX)
A Virtual Piper Pacer is airborne from the Ononge curved runway in Papua New Guinea PNG (FSX)

TAP (Tapini)

A challenging one-way sloped runway nestled in a tight valley. You can even use an ILS to arrive there!

A virtual DHC-4 Caribou on short final for the Tapini (TAP) sloped runway in Papua New Guinea PNG (FSX)
A virtual DHC-4 Caribou on short final for the Tapini (TAP) sloped runway in Papua New Guinea PNG (FSX)

This is a superbly designed area and airport. I visited it with the DHC-4 Caribou but any other big STOL aircraft would have fitted there. There is enough room to manoeuver. It is not too bumpy. There is an interesting slope: it starts downward and ends upward: this helps to slow down the aircraft after landing.

A virtual DHC-4 Caribou on the ground at the Tapini (TAP) airport in Papua New Guinea PNG (FSX)
A virtual DHC-4 Caribou on the ground at the Tapini (TAP) airport in Papua New Guinea PNG (FSX)
A virtual DHC-4 Caribou is airborne from the Tapini (TAP) airport in Papua New Guinea PNG (FSX)
A virtual DHC-4 Caribou is airborne from the Tapini (TAP) airport in Papua New Guinea PNG (FSX)

WTP (Woitape)

Looks like a no brainer, but there is no margin of error on this one-way slightly sloped runway. Very precise calculations and settings are required if you want to land there with something else than a small aircraft.

A virtual De Havilland DHC-7 on final approach for the Woitape airport (WTP) virtual airport in Papua New Guinea (FSX)
A virtual De Havilland DHC-7 on final approach for the Woitape airport (WTP) virtual airport in Papua New Guinea (FSX)

I found the runway to be very slippery with the De Havilland DHC-7. I must say that there was a good crosswind, as I was flying with real life weather and winds. The DHC-7 behaves like a big boat while decelerating on such a runway.

A virtual De Havilland DHC-7 on the ground with two Twin Otters at the Woitape airport (WTP) in Papua New Guinea (FSX)
A virtual De Havilland DHC-7 on the ground with two Twin Otters at the Woitape airport (WTP) in Papua New Guinea (FSX)

The Woitape scenery is gorgeous. It is nice to have all those well designed virtual aircrafts, people and animals on site as this makes the scenery so much more realistic.

A De Havilland Virtual DHC-7 is airborne from the Woitape airport (WTP) in Papua New Guinea (FSX)
A De Havilland Virtual DHC-7 is airborne from the Woitape airport (WTP) in Papua New Guinea (FSX)

I love this new Orbx product. When you fly in such a realistic scenery, the brain does not make much difference between what is real and what is virtual. It really works! And if you use real life weather downloaded from the internet, it’s even better.

I tried the seven airports included in the “Tapini” virtual scenery and they are quite demanding. Yongai was the most challenging airport of them all. I had to do two missed approaches there since I ended up too high on the approach. I eventually got it right, like in real life!

I used the Microsoft flight simulator X (FSX) for all the virtual flights, but other platforms would have worked as well (Dovetail Games FSX Steam edition (FSX: SE) and all versions of P3D). The following products were also installed on my flight simulator: FTX Global, FTX Global Vector and Holgermesh, as well as Pilot’s FS Global 2010.

It is a totally immersive virtual experience and you have to forget everything else when undertaking those challenging virtual flights… if you want to make it “virtually” alive!

For more articles on flight simulation on my web site, click on the following link : Flight simulation