An Air Saguenay DHC-3 Otter has made it from Québec to Kokoda, in Papua New Guinea. It is expected to work around the remote mountain airfields for a while.
Today, the Otter heads for Launumu, a mountain airfield that is at an elevation of 5082 ft asl and 1200 feet long.
The pilot has to watch for the birds in order to avoid any collision in flight…
Following the Kokoda trail is a good way to reach Launumu.
If the mixture is not adjusted, the Otter will lose a lot of steam trying to climb up to 7,500 feet to cross the first line of mountains.
Anybody landing and departing from Launumu deals with high density altitude. This is not only due to the elevation of the airfield but also to the very warm and moist air present in the region. Consequently, some additional airspeed is required on the approach and on the departure.
When a pilot lands southwestward in Launumu coming from Kokoda, he must dive in a valley to lose altitude, which will increase the aircraft’s airspeed. The Launumu runway is in sight.
If the airspeed is not promptly corrected, the approach to the Launumu runway will be too fast. Any airspeed above 60 knots forces the pilot to overshoot (unless you are ready to virtually die a few times while trying).
So, once the higher mountains are crossed, a good way of losing altitude without gaining airspeed is to use flaps (at the corresponding airspeed) and do a tight 360 degree coordinated turn while descending. That way, the pilot will end up in line with the runway and at the speed you want, which is around 50 knots.
The Otter floats endlessly because of its huge wings.
On final for Launumu, the pilot might end up having to deal with the bushes that are close to the runway. It is not unusual for the Otter or the Beaver to complete a difficult approach with bushes wrapped around the landing gear.
Launumu has a surprise for the newcomers. If the pilot lands southwestward, like it was just done here, and the aircraft is not stopped within approximately 600 feet, it starts accelerating since there is a pronounced slope downward in the second half of the runway. This slope leads to a cliff. In case of a missed approach, the pilot can use the slope downwards and dive in the valley at the end of the runway to build up airspeed and start a new approach.
Now that the hard work is done, it is time to wait for the passengers and cargo, and plan the next leg…
The virtual scenery and clouds required softwares like REX, REX Texture Direct, Cumulus X, FTX Global, FTX Global Vector and Pilot’s FS Global 2010.
Well, that is it! The first glider just arrived at the Fane Parish airport in Papua New Guinea…
Before it is officially offered as a tourist attraction for the region, some attempts at taking-off and landing must be done. The first trial attracts a few people!
The descent along the twelve degree sloped runway is a bit rough for the glider’s low wings, as there are some bushes that will have to be trimmed!
The weather is nice and very warm. The only potential problem is the mountain ahead.
Finally, the pilot cuts the link. He is free to go!
The glider flies silently over the lush area of Papua New Guinea.
Using the rising warm air currents, the glider gains altitude.
Why not a pass over Fane?
Here is another isolated village alongside a mountain.
A last steep turn in order to realign for the approach at Fane Parish.
The airbrakes are out and the speed reasonable. The sloped runway is just ahead, on top of the mountain to the right.
Keeping just enough altitude on the approach to be safe.
Now that the landing is a sure thing, it is time to use the airbrakes again to slow down as much as possible.
Keeping in mind that this mountain airfield as a good slope, it is better to have a bit of extra speed. Nobody likes to stall a few feet over a runway!
What an experience it was! But I’ll need some help to pull the glider up the slope!
The virtual flight was great, the view was worth every penny, and I think that this could become a new touristic attraction for the region and the more wealthy visitors…
There is no aircraft in the sky around the Port Moresby Jacksons (AYPY) virtual airport today. No aircraft in the sky but one, a medevac flight.
The winds blow from 240 degree at 50G60 kts and the runways are oriented 14/32. It is way above the maximum crosswind authorized for any aircraft.
But the Shrike Commander’s crew cannot wait until the wind calms down. They must land in the next few minutes in order to save a patient’s life.
As there is no traffic around, the captain has told ATC he intends to do a safe, efficient but non-standard approach.
Arriving straight across the runways, facing the wind, the crew intends to land the aircraft a few feet short of a hangar. The captain requests that someone opens the hangar doors right away. The captain will terminate the approach in the hangar, protected from the wind.
It is safer to arrive facing the wind and immediately enter the hangar, straight ahead. No taxiing with a 60 knots crosswind.
Useless to say, ATC has already refused the request. But the pilot is the only one who decides of the best landing surface, for the safety of the passengers and himself. He proceeds with the approach after having clearly indicated which path will be followed.
The main problem for the approach is the low level mechanical turbulence caused by the gusty 60 kts winds.
If ATC wants to file a complaint, now is a good time to take a picture of the aircraft and its registration to support the case.
The actual ground speed of the airplane is around 20 kts.
The steady high wind speed is actually safer for the crew than if the winds were 240 at 35G60.
Still a bit above the runway and with a 10-20 knots ground speed. The airspeed indicator shows the strength of the wind itself plus the ground speed.
Floating like a hot air balloon or almost!
As the aircraft touches the ground, it stops almost immediately. It is necessary to apply power to reach the hangar, as you can see with the white trail on the ground behind the aircraft.
In real life, the touch-down would have had to be as soon as the asphalt start since the presence of the hangar lowers the wind speed a bit.
A few seconds after the touch-down, the aircraft is in the hangar, protected from the wind, and both doctor and patient can quickly head out to the hospital.
Once in the hangar, the winds were adjusted to zero, which is kind of logical, unless the opposite wall is missing!
It was now time to brace for another storm, which was the inquiry that would possibly follow the landing!
(P.S.: Tim Harris and Ken Hall were the creators of this virtual Port Moresby Jacksons international airport) and it is sold by ORBX. The aircraft is sold by Carenado).
Good news for flight simulation enthousiasts! Those who had stopped looking for a virtual MD-11 will have an opportunity to fly this legendary aircraft.
The Rotate company, which makes virtual aircrafts for the X-Plane flight simulation platform, has decided to make a virtual MD-11. It is quite a challenge but the progress is steady.
A few years ago, another company, PMDG, created a virtual MD-11 but decided to drop the product and let down the customers who had bought their excellent aircraft. They stopped providing updates and eventually erased the MD-11 from their list of products.
Since then, many flight simmers have been wondering if they could one day learn to fly the MD-11. Numerous crashes of MD-11s have happened in real life since its creation by Mc Donnell Douglas. They were mostly due to pilots unable to master the aircraft, except in the case of Swissair 111.
The Rotate’s staff have recently published a new photo (see above) on their WEB page to show that the virtual aircraft is slowly taking shape. The graphic quality is really superb.
In an interview given to PC Pilot in the March/April edition, Rotate said that they want to achieve a high level of simulation with the MD-11, but that they still have a long way to go. They stated that the MD-11 is much bigger and much more complex than the MD-80 (that they are already offering) and that they want the MD-11 to reflect those characteristics.
Those who fly using FSX will now be able to add X-Plane as another flight simulator to their computer and thus use the MD-11 when it will be ready (probably around the end of 2019).
The beauty with X-plane is that the 64 bits platform uses all six cores of the new CPUs on the market. The FPS (frame per second) number is thus very high, which will allow users of the MD-11 to fly around huge virtual airports when the weather is complex without having to compromise.
Another positive aspect is that ORBX now offers products for X-Plane, which will greatly increase the choice of quality virtual sceneries.
I know, Sumburgh is not an airport meant to receive the Antonov 225, even less with the Russian space shuttle Buran as cargo. In fact, this aircraft and Sumburgh exclude each other mutually. But if you want to try an almost impossible virtual flight , now is the opportunity.
You must forget about the weight of the aircraft on the runway, the limited space to taxy and park, and the required distance for an eventual take-off. It is probable that once in Sumburgh, this aircraft will stay there forever.
It is interesting, though, to remember the exceptional performances of the Antonov 225. While flying over the Bourget for a demonstration, it was able to maintain a 45 degree turn with the 62 tons Russian shuttle mounted on top.
The approach can be made at a surprisingly slow speed for an aircraft of that weight and the breaking performance is known to be excellent. In Sumburgh, you have the choice between two runways (4700 to 4900 feet). Forget about a safe final approach, you must fly it like a daredevil. It is possible to download the Antonov 225 and the shuttle for free. As for the Sumburgh airport, it is a creation of ORBX and is available for a very reasonable fee.
Wanting to add an almost impossible flight in the “unhinged virtual flights” section of my web site, I tried a flight with the Blue Angels C-130 Hercules (Captain Sim) where the aircraft gradually lost all of its engines.
I am aware that the Blue Angels mechanics are real professionals, so I assumed that the engine failures were caused by an unknown reason.
The take-off was made without problem from the Canadian High River (CEN4) airport. This free airport was designed by Vlad Maly and is available through ORBX. The aircraft leaves the 4150 feet runway heading to the Coeur d’Alène airport (KCOE) in United States.
Eventually, the first engine stops. This does not cause a problem. The propeller is feathered and the gradual climbing continues.
The second engine stops. The pilot must forget the initial destination. Bonners Ferry (65S) becomes the alternate airport since the 4000×75 feet runway is good enough for the C-130.
The third engines gives way. A slow descent starts. Bonners Ferry is not very far. The airport is at an altitude of 2337 ft asl.
The aircraft is volontarily flown at a higher altitude than what would normally be requested for a normal approach, just in case the fourth engine stops. When three engines stop after the same refueling, the pilot has the right to think that what feeds the fourth engine can also cause problems.
The highest mountains are now behind the aircraft.
The Bonners Ferry (65S) runway is in sight.
The fourth engine stops. The flaps will not be functional for the landing.
From now on, the pilot should save the virtual flight a few times since it is possible that several trials will be necessary to glide sucessfully to the airport. This is the fun of virtual flight.
The C-130 Hercules has become a big glider. When the speed is maintained, the aircraft loses more 1000 feet per minute. It is easier to feel the aircraft’s inertia.
The wheels will be brought out only when necessary since the gear adds a lot of drag.
From the position indicated in the picture below, it is impossible to arrive to the airport in a straight line: the aircraft will glide over the airport. In the picture, the aircraft seems to be on a good path for landing, but it is an illusion caused by the wide-angle format chosen for the screen capture.
The aircraft is definitely too high. It is impossible to use the flaps to increase the rate of descent.
One must choose between 1) sideslips 2) a 360 degree turn to lose altitude or 3) multiple steep turns perpendicular to the runway to increase to distance to the airport.
What would you choose?
There is no universal method. The 360 degree turn is riskier but can prove efficient. An Airbus A330-200 flown by Quebecer Robert Piché that had lost all of its engines landed successfully in the Açores in 2001 after attempting a last minute 360 degree turn to lose altitude. But here, I did not believe there was enough altitude to safely complete the turn and reach the runway.
A few steep turns were made to extend to ride to the airport. Why steep turns? In order to avoid getting closer to the airport before an acceptable altitude was reached. This method helped keep an eye on the runway at all times to verify if the slope to the airport was still acceptable.
I tried the three methods, always starting from the same saved flight (photo 10). After several sideslips, the aircraft was always approaching the airport too quickly. There was not enough time to lose altitude. The final speed always happened to be too high to stop a C-130 without flaps or thrust reversers.
The 360 degree turn, be it right or left, with different angles and a reasonable speed, always incurred a loss of altitude that brought the aircraft 200 to 300 feet short of the threshold.
Finally, after a few steep turns, the aircraft was positioned on final with the appropriate speed and altitude.
A few last seconds adjustments, to reposition the aircraft in the center of the runway.
At 140 kts, but without any reverse thrust, the whole runway should be necessary to stop the aircraft.
The landing was smooth and the aircraft stopped short of the threshold.
For an unknown reason, the anemometer was still indicating a 10 kts airspeed, even when the aircraft had stopped.
Try such a flight in the virtual mode. The worst that can happen is that you have fun!
The virtual flight below was made with the FSX flight simulation platform. The last time I flew at Limberlost Ranch, I used a Cessna C-207 ( The Cessna C-207 in Limberlost Ranch ).
This time, I tried the sloped and laterally uneven runway with a Twin Otter. This one is painted with the real colours of the Province of Ontario Ministry of natural resources (C-FOPG). The only problem I expected was regarding the larger wings of the Twin Otter once close to the hangar.
Finally, everything went well. The only difficulty was to manoeuver near the hangar to reposition the aircraft for take-off. With several ajustments to the propeller’s pitch, I was eventually able to turn around.
Since the fence is low enough, it is not a problem for the aircraft’s wings.
Near the grass runway’s threshold are a few tall trees that require, for safety measures, a slight banking. Just in case…
Limberlost Ranch is a fun challenge. It is part of a package called Blue-Canyon Nyack and sold by Orbx. If this is not challenging enough for the flight simulation buff, it is always possible to add strong direct crosswinds and that should do it!
An interesting challenge for flight simulation enthousiasts consists in searching and intercepting virtual aircrafts that are flying randomly: those without any known flight plans.
The degree of difficulty varies accordingly with the intercepted aircraft and the interceptor.
The screen capture below shows a relatively simple interception since it is not too difficult for the AV-8B Harrier to modify its speed according to the high cruising speed of a Beechcraft B350.
In order to increase the difficulty, the flight simmer could attempt the interception in flight of a relatively slow aircraft with a military jet.
A challenging virtual flight can be executed by using a CF-18 and adapting its speed and altitude to that of the intercepted aircraft while flying in formation for one minute. In order to succeed, it will be necessary to set the CF-18 in a slow flight configuration with the wheels out.
This type of interception is sometimes done in real life when an aircraft accidentally (or not) enters a restricted zone. A military jet must then take-off, reach the unknown target, get very close and make the appropriate signals ordering it to follow him to the closest military base.
Once in flight, do not forget to take a screen capture! Good luck and have a good flight!
Manually flying a huge aircraft like the MD-11F to make a virtual landing in Innsbruck surely will be fun for most flight simulation enthusiasts. Since the Innsbruck airport and its surroundings have been redesigned under ORBX Innsbruck, the immersion feeling is total. The landscape is absolutely fantastic.
Start by taking-off from runway 08. Anybody standing near the fence at the end of the runway will feel the blast. Then, gain enough altitude to be able to do a 180 degree turn to realign the aircraft for runway 26.
Make sure to activate the “air turbulence” option on your virtual weather engine, since an approach near the mountains in Innsbruck generates enough turbulence to make your approach more difficult. The pilot must also, for this exercise, deal with the actual winds even if they do not favor runway 26.
The flaps must be adjusted to 50 degrees for the MD-11F. Insure that the “Autopilot” function is set at “OFF”. The intensity of the automatic breaking is chosen according to the actual winds, the aircraft’s cargo load and the altitude of the airport. The margin of manoeuver with regards to the approach speed is not very large. I tried to maintain 150 kts.
The Innsbruck runway is 2000 meters long. There is not much leeway for the MD-11F.
Once on the ground, you must continue until the end of runway 26 in order to do a 180 degree turn. There is just enough space for the MD-11F.
As you can see in the image below, looking at the windsock, the landing was made with a good tailwind.
The airport is superbly represented and a parking space is already reserved for bigger aircrafts. Employees are waiting for your arrival.
You can try landing with any other big carrier if you do not already own a PMDG virtual MD-11. If you would like to acquire this aircraft, you will realize that it is no longer offered by PMDG, at least for now. Try to put some pressure on the company so that they restart offering the aircraft on which they have put in so much effort. A message on their Facebook site should show your interest: PMDG
If you would like to see an exceptional two hour aviation video on a real flight that lasted ten days across the world, there is none better than the one made by PilotsEYE.tv: Lufthansa Cargo MD-11F in Quito
You witness part of the crew’s planning for a landing on the old Quito runway, in Ecuador. The airport’s altitude is so high that the MD-11F margin of manoeuver is extremely limited. Make sure to own a player that can decode European videos.
The picture above shows a virtual MD-11 aircraft with the VASP livery over Sao Paulo. In the flight simulator, I positioned it on final for the Guarulhos international airport in Brazil (IATA: GRU, ICAO: SBGR). This MD-11 was created by PMDG.
The landscape is modelized by ORBX and is made of overlapping layers of their different products in order to achieve this final aspect. There is first FTX Global Base Pack, then FTX Global openLC South America and FTX Global Vector. The last touch is added through FTX Global Trees HD, but it is not really visible here due to the late hour.
The two pictures above show a MD-11 just airborne from Innsbruck, in Austria. The landscape of that region, in real life or virtual mode, is absolutely stunning. I am essentially using the FSX flight simulation platform for now, but I am always monitoring the progress made with Aerofly FS2. The virtual cloud textures for the three pictures are modelized by Rex Simulations and the weather engine used for the flights was FSGRW.
The MD-11 is an extremely interesting aircraft to fly in the flight simulation mode but it seems that PMDG is not bringing the aircraft up to date to follow the evolution of Microsoft operating systems. It has not been modified neither to work with P3D or other virtual flight platforms. Nevertheless, if customers start expressing their interest in that aircraft, I am convinced that PMDG would allow a bit more research in order to bring that MD-11 with today’s standards of flight simulation ( https://www.facebook.com/pmdgsimulations ).
The documentation offered for the MD-11 by PMDG is really complete. All the articles written in the PC Pilot magazine on how to fly the aircraft are also still available today in only one download.