Categories
Flight Simulation

Around the world in flight simulation (9)

The Antonov 225 taking-off from the Antonov airport (UKKM) in Ukraine heading to Sochi, Russia.
The Antonov 225 taking-off from the Antonov airport (UKKM) in Ukraine heading to Sochi, Russia.

Today, the Antonov 225 is reborn for another leg of this world tour of flight simulation. In reality, this aircraft was destroyed by Russia during its invasion of Ukraine. At the time of writing, war is still raging between the two nations. But in virtual mode, we have more latitude to alter the course of events and simulate peace.

So, we leave Ukraine’s Antonov airport (UKKM), fly over Crimea and then stop off in Sochi, Russia (airport code USSR). Our destination is Lublin airport (EPLB) in Poland.

The weather is looking good, with clear skies for the arrival in Sochi. The scenery around Sochi is splendid, and it’s best to land in good weather.

Take-off is a breeze, but the Antonov 225’s heaviness takes some getting used to. The weight of the aircraft means that every time the pilot makes a maneuver with the flight controls, initially nothing happens. Then, the aircraft slowly begins to obey. So, you have to expect delays and anticipate the outcome of maneuvers.

Navigraph is used for navigation. Of course, I plan to deviate from the initial route to fly over Crimea and then on to Sochi.

The pink triangle indicates the position of the Antonov 225 entering Crimea on its flight to Sochi in Russia and then Poland.
The pink triangle indicates the position of the Antonov 225 entering Crimea on its flight to Sochi in Russia and then Poland.

Below, the ploughed fields of the Ukraine. Ukraine is considered the breadbasket of the world.

The Antonov 225 over the cultivated fields of Ukraine.
The Antonov 225 over the cultivated fields of Ukraine.

Crimea is a beautiful region from the air, but fiercely contested on the ground. A pilot would say that today, it’s more turbulent down there than up.

The Antonov 225 entering Crimea on its flight to Russia then Poland
The Antonov 225 entering Crimea on its flight to Russia then Poland

A few minutes later, the flight over the Sea of Azov begins in the direction of Sochi.

The approach is spectacular, with the surrounding mountains. As with all large aircraft, the Antonov has to be stabilized well in advance to avoid overcorrecting on final.

Antonov 225 on long final for runway 06 in Sochi (USSR), Russia.
Antonov 225 on long final for runway 06 in Sochi (USSR), Russia.

The cargo plane stops in an extremely short distance for such a heavy aircraft. When the thrust is reversed on six engines, there’s no need to set the brakes to maximum, especially in Sochi. We make a short stopover.

Antonov 225 parked for a short stopover at Sochi (USSR), Russia.
Antonov 225 parked for a short stopover at Sochi (USSR), Russia.

Just after our arrival, a Russian Sukhoi 27 military jet makes a low pass near the tower. The fighter jet was created at the time in response to the construction of the American F-15.

A Sukhoi Su-27 makes a low pass at the Sochi Airport (USSR), Russia.
A Sukhoi Su-27 makes a low pass at the Sochi Airport (USSR), Russia.

The flight resumes in the late afternoon. Below, the Antonov 225 is on final approach to runway 25 at Lublin airport in Poland.

Antonov 225 on final for rwy 25 at Lublin airport, Poland
Antonov 225 on final for rwy 25 at Lublin airport, Poland

The thrust reversers allow the aircraft to exit onto the taxiway in the middle of the runway.

Antonov 225 with thrust reversers after landing at Lublin (EPLB) airport in Poland.
Antonov 225 with thrust reversers after landing at Lublin (EPLB) airport in Poland.

We get a little help with parking.

Antonov 225 with some help for the parking at Lublin airport, Poland
Antonov 225 with some help for the parking at Lublin airport, Poland

The next stage of this round-the-world flight simulation will be with a smaller aircraft, heading for Germany. A flight over Göttingen is planned with a helicopter (D-JORG). The trip will end at Paderborn Lippstadt Airport (EDLP).

Click on the link to read more about this round-the-world flight simulation on my blog.

Categories
Flight Simulation

Around the world in flight simulation (8).

OMA's concrete towers in Stockholm with Microsoft Flight Simulator.
OMA’s concrete towers in Stockholm with Microsoft Flight Simulator.

Leg 8 of this round-the-world trip in flight simulation is from Stockholm-Bromma airport in Sweden to Antonov (Hostomel) international airport in Ukraine (UKKM), where the virtual Antonov 225 is based.

The world’s only example of this aircraft was destroyed at the start of the Russian invasion of Ukraine in February 2022. However, no one can prevent a virtual aircraft from surviving (even computer) attacks. Note that the entire purchase price of the virtual aircraft in the Microsoft store is reserved for the eventual reconstruction of the real aircraft.

F14D Tomcat military jet ready for departure at Stockholm-Bromma virtual airport (ESSB) with Microsoft Flight Simulator.
F14D Tomcat military jet ready for departure at Stockholm-Bromma virtual airport (ESSB) with Microsoft Flight Simulator.

For the trip, a quick overflight of Belarus will be necessary. A decommissioned, unarmed F-14 Tomcat should do the trick.

F-14D Tomcat airborne from the Stockholm-Bromma (ESSB) virtual airport in flight simulation.
F-14D Tomcat airborne from the Stockholm-Bromma (ESSB) virtual airport in flight simulation.

The flight will take place at speeds above the sound barrier.

Navigraph chart of the flight from ESSB to UKKM Antonov International airport
Navigraph chart of the flight from ESSB to UKKM Antonov International airport

The Navigraph map above shows the planned route. The pink triangle shows the F-14 entering Belarus.

F-14D Tomcat in a dive for a low pass ate high speed over Belarus.
F-14D Tomcat in a dive for a low pass ate high speed over Belarus.

A change of itinerary is in order for a few minutes, with a dive into Belarusian territory. But, as the military say, this flight “never happened”.

F-14D Tomcat on a low pass at high speed over Belarus.
F-14D Tomcat on a low pass at high speed over Belarus.

We’re obviously not invited to perform a high-speed pass. But it seems to be becoming the norm in this part of the world in recent years, so why not us?

F-14D Tomcat heading to Kyiv Hostomel airport (GML) in flight simulation
F-14D Tomcat heading to Kyiv Hostomel airport (GML) in flight simulation

The flight to Antonov International Airport continues at top speed. We’ll soon be there.

F-14D Tomcat turning final for the Antonov International airport (UKKM) in flight simulation.
F-14D Tomcat turning final for the Antonov International airport (UKKM) in flight simulation.

Above, the F-14 makes a descent turn for the final approach to Antonov airport, with landing gear down and flaps adjusted. In real life, the runway has been damaged by the Ukrainians themselves to prevent the Russians from easily establishing a beachhead in their country. But we’re in virtual mode, so anything goes.

A F-14D Tomcat and Ukrainian soldiers on the Antonov International airport (Hostomel) (UKKM) in flight simulation.
A F-14D Tomcat and Ukrainian soldiers on the Antonov International airport (Hostomel) (UKKM) in flight simulation.

As we taxi, we pass a few Ukrainian army soldiers greeting the arrival of the foreign pilots.

The virtual Antonov 225 is in its hangar, the very place where it was destroyed at the start of the conflict. I’ll be using this aircraft for the next leg of my round-the-world trip, flying over Crimea, landing in Russia and finally finishing the leg in Poland. We mustn’t leave the virtual Antonov 225 in Russia, as a matter of principle.

Click on the link for more flight simulator flights around the world on my blog.

Categories
Flight Simulation

Around the world in flight simulation (7).

A surprise awaits us as we depart from the Sandane airport (ENSD) for Sweden, Stockholm-Bromma airport (ESSB).

Drone on the ground at Sandane airport (ENSD) in Norway.
Drone on the ground at Sandane airport (ENSD) in Norway.

A Northrop Grumman RQ-4 Global Hawk drone is at the airport. This long-range surveillance aircraft has an autonomy of around 35 hours and a range of 22779 kilometers. It flies at altitudes of up to 60,000 feet (18288 meters). Its maximum speed is 635 km/h, and each hour of operation costs $24,000.

Beech 350I airborne from the Sandane Airport (ENSD) heading to Stockholm-Broma airport (ESSB)
Beech 350I airborne from the Sandane Airport (ENSD) heading to Stockholm-Broma airport (ESSB)

Today, we’re repositioning a twin-engine Beechcraft King Air 350I that hasn’t flown in ages. The usual checks have been carried out to ensure that no birds have nested under the engine cowling. We also checked that there was no condensation water at the bottom of the fuel tanks. Finally, we ran the engines for a long time on the ground. The aircraft takes off from Sandane for a planned altitude of 18,000 feet.

Over Norway snowcapped mountains heading to Sweden in flight simulation.
Over Norway snowcapped mountains heading to Sweden in flight simulation.

We fly over the mountains of Norway towards Sweden. Everything goes according to plan.

Navigraph chart showing a flight from Sandane (ENSD) to Stockholm-Bromma (ESSB)
Navigraph chart showing a flight from Sandane (ENSD) to Stockholm-Bromma (ESSB)

The Navigraph map shows the planned route between the two countries.

Engine failure on a twin engine aircraft with Microsoft Flight Simulator.
Engine failure on a twin engine aircraft with Microsoft Flight Simulator.

Suddenly, the left engine experiences problems. It stops and the propeller feathers to minimize drag. Since we’re approaching the runway at Stockholm-Bromma airport, we choose to continue on our way, as we benefit from a large airstrip and emergency response services. Now unsure about the reliability of the second engine, we keep a slightly higher altitude than a normal approach would generally dictate.

Double engine failure on a twin engine with Microsoft Flight Simulator.
Double engine failure on a twin engine with Microsoft Flight Simulator.

A few minutes later, the second engine stops. The plane becomes a large glider. The clouds prevent a good view of the surrounding area, but we feel our altitude is sufficient to attempt an approach to the airport when the runway is in sight.

On final for Stockholm-Bromma airport with a double engine failure
On final for Stockholm-Bromma airport with a double engine failure

The flaps and landing gear will only be extended once we’re established on final and the aircraft is stabilized and certain of reaching the runway. Microsoft’s flight simulator doesn’t allow us to do just anything with an aircraft. If we exceed the aircraft’s structural capabilities when attempting to reach the airport, the flight will stop immediately.

On the ground at Stockholm-Bromma with a double engine failure on a Beechcraft 350I in flight simulation.
On the ground at Stockholm-Bromma with a double engine failure on a Beechcraft 350I in flight simulation.

The final approach and taxiing caused no problems. The aircraft gradually slows down until it comes to a complete stop on the runway. The poor air traffic controllers now have to apply Plan B to reorganize air traffic around the airport, with the main runway temporarily blocked.

Beechcraft maintenance hangar at the Stockholm-Bromma virtual airport
Beechcraft maintenance hangar at the Stockholm-Bromma virtual airport

Fortunately, Beechcraft offers maintenance services at Stockholm-Bromma airport. So, we’ll leave the aircraft for major repairs and find something faster for the next flight to Ukraine. Why not an F-14 Tomcat? It is not in military service anymore and thus its presence in the air should not worry too much.

P.S. This story is based on a real even that happened in Quebec several years ago. An acquaintance of mine (Paul B.) was scheduled to fly from the Val-d’Or airport (CYVO) to Rouyn-Noranda (CYUY) in a light twin-engine aircraft that hadn’t flown in a long time. Halfway between CYVO and CYUY, the first engine failed. The pilot decided to continue. With the runway in sight in the distance, the second engine stopped. The pilot hovered the aircraft and managed to land on route 117, just behind a large truck which accelerated to give way to the aircraft he could see descending in his rear-view mirror. The aircraft landed safely and without damages!

Click on the link for more flight simulator flights around the world on my blog.

Categories
Flight Simulation

Around the world in flight simulation (6)

The sixth leg of this world tour of flight simulation continues with a journey from the Molde (ENML) airport to the Sandane/Anda (ENSD) airport in southern Norway.

Ready for departure from Molde (ENML) virtual airport to Sandane (ENSD) airport.
Ready for departure from Molde (ENML) virtual airport to Sandane (ENSD) airport.

The destination can’t accommodate a private jet like the Cessna Citation Longitude, as runway 08/26 is only 3182 feet long. A good old light twin-engine plane, repainted a hundred times over, will have to be rented for the trip, and we’ll just have to hope the engines hold out.

Enroute to the virtual Sandane airport (ENSD) in Norway with Microsoft Flight Simulator.
Enroute to the virtual Sandane airport (ENSD) in Norway with Microsoft Flight Simulator

The mountains of Norway come into view, and the ascent continues gradually to ensure that the highest peaks along the route pose no problems.

The navigraph tool for flight simulation and the VFR map from ENML to ENSD.
The navigraph tool for flight simulation and the VFR map from ENML to ENSD.

Above, a view of the aircraft’s instrument panel as it climbs, with a Navigraph map showing the route flown in visual flight. Virtual weather is integrated in real time whenever a new weather report is issued by a ground observation station around the world.

View of the Norwegian mountains from the pilot seat
View of the Norwegian mountains from the pilot seat
Morning sun over the Norwegian mountains with Microsoft Flight Simulator.
Morning sun over the Norwegian mountains with Microsoft Flight Simulator.

Another sunrise view that brings Norway’s magnificent mountain landscape to life.

Approaching the Sandane virtual airport in flight simulation.

Approaching the Sandane virtual airport in flight simulation.

We are now almost at our destination. The plane is in left base for runway 08 at Sandane/Alda airport.

Turning final for runway 08 at Sandane (ENSD) virtual airport in Norway.
Turning final for runway 08 at Sandane (ENSD) virtual airport in Norway.

Over the still-frozen Innvikfjorden, the final turn is made to stabilize the aircraft on final runway 08. On short final, there’s a cliff just short of threshold 08, and a difference in runway height to take into account for the landing.

View of the Sandane (ENSD) virtual airport with Microsoft Flight Simulator.
View of the Sandane (ENSD) virtual airport with Microsoft Flight Simulator.

Above, a view of the Sandane/Alda virtual airport (ENSD) using Microsoft Flight Simulator. There is no margin for error, as the two runway thresholds are bordered by a cliff and a stretch of water.

Help for parking is offered at the Sandane (ENSD) virtual airport in Norway.
Help for parking is offered at the Sandane (ENSD) virtual airport in Norway.

Service at the airport is excellent. Two employees are waiting to help us park our aircraft.

Sandane is known for its magnificent panoramas, waterfalls, Briksdalsbreen glacier and horseback riding. The village is nestled inland from the Gloppe Fjord. If you’re traveling there in summer, you’ll need to be prepared for a fair amount of precipitation.

The next flight is from Sandane to Stockholm-Bromma in Sweden with a Beechcraft King Air 350I which has not flown for a long time. We’ll have to fly over the high mountains of the Jostedalsbreen Nasjonalpark   before reaching our destination.

Click on the link for more flight simulator flights around the world   on my blog.

Categories
Flight Simulation

Around the world in flight simulation (5).

Airborne from the Ivalo virtual airport (EFIV) in northern Finland.
Airborne from the Ivalo virtual airport (EFIV) in northern Finland.

The fifth leg of this world tour in flight simulation continues with a journey from Ivalo airport (EFIV) in Finland to Molde airport (ENML)   in southern Norway. It’s hard to see daylight through the cloud cover as we take off.

In anticipation of this and subsequent flights, I subscribed to Navigraph to make the experience even more immersive. The map below shows the choices for arrival procedures at Molde airport. In green are the reporting points for the arrival and in orange those for the approach. The aircraft follows these points automatically, thanks to the on-board computer.

Navigraph informations for the arrival in Molde (ENML)
Navigraph informations for the arrival in Molde (ENML)

I’m only just getting to grips with Navigraph and am still going through a trial-and-error process when it comes to using the data. But I’m making progress…

Heading towards the Molde (ENML) airport in Norway with MFS2020.
Heading towards the Molde (ENML) airport in Norway with MFS2020.

Once through the cloud layer, the aircraft finally reaches flight level FL380 (38,000 feet).

The runway at Molde airport is 2221 metres (7287 feet) long, and lies on the shore of Moldefjorden. It’s perfect for the Cessna Citation Longitude, but there are mountains on the approach.

Navigraph map superposed on the geography on approach for the Molde airport (ENML)
Navigraph map superposed on the geography on approach for the Molde airport (ENML)

The data provided by Navigraph helps the pilot to use the correct altitude limits to maintain a safe height above the terrain at all times. You can also track the aircraft’s progress along the chosen route. Several types of maps are also available to help prepare take-offs and landings. When required, maps can be overlaid with the Navigraph system, while maintaining the aircraft’s planned route over the local geography.

Cessna Citation Longitude descending towards the Molde airport (ENML) airport in Norway in flight simulation.
Cessna Citation Longitude descending towards the Molde airport (ENML) airport in Norway in flight simulation.

We start the descent to Molde airport. The cloud cover is relatively thin and visibility is not a problem.

Descending for Molde airport (ENML) in Norway with Microsoft Flight Simulator.
Descending for Molde airport (ENML) in Norway with Microsoft Flight Simulator.

The setting sun makes for beautiful scenes on the descent to Molde.

Approaching the virtual Molde airport (ENML) with the Cessna Citation Longitude
Approaching the virtual Molde airport (ENML) with the Cessna Citation Longitude

Once out of the clouds and in ideal weather, the autopilot is disconnected and the approach is made visually.

On final for runway 25 at the Molde virtual airport (ENML) in flight simulation.
On final for runway 25 at the Molde virtual airport (ENML) in flight simulation.

Winds oriented almost in line with runway 25 facilitate the approach.

Exiting runway 25 at the Molde airport (ENML) in Norway.
Exiting runway 25 at the Molde airport (ENML) in Norway.

The Cessna Citation leaves runway 25 and parks for a few days in Molde, a Norwegian town renowned for its beautiful mountains and numerous parks and rose gardens. This town was saved from famine in 1740 by the presence of herrings. The town’s coat of arms features a whale hunting herrings in a barrel as a reminder of this period. Thanks to its position along the fjords and the foehn effect, winters in Molde are relatively mild (and very mild compared to Canada).

Soon the sixth leg of the flight will take place, from Molde to Sandane (ENSD), a Norwegian airport surrounded by beautiful mountains.

Click on the link for more flight simulator flights around the world https://francoisouellet.ca/en/category/flight-simulation/  on my blog.

Categories
Flight Simulation

Around the world in flight simulation (4)

Cessna 700 airborne from the virtual Vagar (EKVG) airport in the Faroe Islands with Microsoft Flight Simulator.
Cessna 700 airborne from the virtual Vagar (EKVG) airport in the Faroe Islands with Microsoft Flight Simulator.

The fourth leg of this world tour in flight simulation continues with a trip between Vagar airport (EKVG) in the Faroe Islands (Kingdom of Denmark) and Finland‘s northernmost airport, (EFIV).

Below is a diagram showing the route, which takes approximately two hours.

From the Vagar airport (EKVG) to the Ivalo airport (EFIV).
From the Vagar airport (EKVG) to the Ivalo airport (EFIV).

I’m using Microsoft Flight Simulator for the trip. The tanks are only 50% full, as we need to limit the aircraft’s weight to allow a safe takeoff on this 5908-foot runway. The aircraft requires a minimum of 4810 feet, to which must be added a strong crosswind component this morning. What’s more, the runway is soggy. If we add too much fuel, we risk ending up in the bay at the end of runway 30.

Cessna Longitude enroute to Ivalo (EFIV) Finland in flight simulation.
Cessna Longitude enroute to Ivalo (EFIV) Finland in flight simulation.

The virtual Cessna Longitude is now at its planned cruising altitude. Thick clouds cover the coast of Norway, but the weather is much more favorable in northern Finland, where our destination lies.

Virtual Cessna 700 starting the descent towards Ivalo (EFIV) Finland.
Virtual Cessna 700 starting the descent towards Ivalo (EFIV) Finland.

After waiting as long as possible before starting the descent, to save the remaining fuel, it’s time to descend into the cloud layer for the approach to Ivalo.

Virtual Cessna Longitude over the frozen northern land of Finland
Virtual Cessna Longitude over the frozen northern land of Finland

On the way down to the airport, the aircraft passes through several layers of cloud. Finland, still frozen in March, is clearly visible.

Visual approach to the Ivalo (EFIV) virtual airport in Finland
Visual approach to the Ivalo (EFIV) virtual airport in Finland

We have to wait until the last moment to extend the landing gear and flaps to maximize fuel economy. Near the airport, I’m treated to a magnificent spectacle as the sun reaches the horizon.

Long final for runway 22 of the Ivalo virtual airport (EFIV) in Finland
Long final for runway 22 of the Ivalo virtual airport (EFIV) in Finland

Landing gear down. Flaps to follow shortly. An alarm has just gone off in the cockpit to indicate a low fuel level in the tanks. But there’s still around 350 lbs for each engine. On final approach, the view is superb.

Cessna Citation on short final runway 22 for the Ivalo (EFIV) virtual airport in Finland.
Cessna Citation on short final runway 22 for the Ivalo (EFIV) virtual airport in Finland.

Winds are 220 degrees at 7 knots, directly in line with Runway 22. The runway is 8199 x 148 feet. The flaps are down and the approach is smooth.

Ivalo (EFIV) the northernmost aiport in Finland with Microsoft Flight Simulator copie
Ivalo (EFIV) the northernmost aiport in Finland with Microsoft Flight Simulator copie

Welcome to Lapland! Ivalo Airport (EFIV) was Finland’s ninth busiest airport in 2024. The region attracts winter sports enthusiasts as well as those keen to observe the Northern Lights.  

Click on the link for more flights around the world in flight simulation on my blog.

Categories
Flight Simulation

Around the world in flight simulation (3)

Airborne from the Isafjordur airport (BIIS) In Iceland with Microsoft Flight Simulator.
Airborne from the Isafjordur airport (BIIS) In Iceland with Microsoft Flight Simulator.

The third leg of the round-the-world flight simulation begins with a departure from Isafjordur (BIIS) in Iceland and ends at Vagar airport (EKVG) in the Faroe Islands, an autonomous archipelago belonging to the Kingdom of Denmark.

The departure from Isafjordur faces a mountain. You can see the shadows on the ground. But as visibility is perfect, this is no problem at all, as long as the rate of climb is sufficient.

Virtual flight BIIS EGVK
Virtual flight BIIS EGVK
The Cessna Citation Longitude is airborne from the Isafjordur airport (BIIS) in Iceland with Microsoft Flight Simulator.
The Cessna Citation Longitude is airborne from the Isafjordur airport (BIIS) in Iceland with Microsoft Flight Simulator.

A left turn over the superb Icelandic landscape establishes the Cessna Citation Longitude on course for the Faroe Islands. The FMS ensures that the aircraft will stay on course. But it’s important to remain vigilant: there’s a lot of other equipment that can cause surprises along the way.

The Cessna Citation is climbing slowly over Iceland.
The Cessna Citation is climbing slowly over Iceland.

The climb continues over a magnificent landscape. There’s no turbulence today; if there were, the flight simulator would make sure the plane was harder to control, even for the autopilot. I set the virtual flight to observe real air traffic during the flight, but the route between Iceland and the Faroe Islands is off the most popular routes, so it’s normal not to encounter too many aircrafts.

The Cessna Citation Longitude is heading to the Vagar airport (EKVG) in Feroe Islands
The Cessna Citation Longitude is heading to the Vagar airport (EKVG) in Feroe Islands

We are now established at our cruising altitude, leaving Iceland’s eastern border to fly over the Atlantic Ocean.

Visual approach for runway 12 at the Vagar airport (EKVG) Feroe Islands
Visual approach for runway 12 at the Vagar airport (EKVG) Feroe Islands

We disconnect the autopilot to give us a free hand on the visual approach to Vagar (EKVG) airport. A small white dot, the lights of runway 12, can be seen straight ahead in the distance.  The landing gear is down, as are the flaps, and the speed has stabilized at around 140 knots for the moment.

The Cessna Citation is on long final for runway 12 of the Vagar airport (EKVG) Faroe Islands
The Cessna Citation is on long final for runway 12 of the Vagar airport (EKVG) Faroe Islands

It’s an ideal time to arrive in the Faroe Islands, with the setting sun coloring all the surrounding clouds.

The Citation Longitude on visual approach to runway 12 at the Vagar airport (EKVG)
The Citation Longitude on visual approach to runway 12 at the Vagar airport (EKVG)

Runway 12 is visible on the far right in the photo above. The uneven cloud cover sometimes blocks the view of the airport for a few seconds, but the wind quickly blows the clouds away, preventing a missed approach. Virtual weather ensures a constant renewal of weather conditions.

The Cessna Citation exits runway 12 at the Vagar airport (EKVG) in Faroe Islands with Microsoft Flight Simulator
The Cessna Citation exits runway 12 at the Vagar airport (EKVG) in Faroe Islands with Microsoft Flight Simulator

Landing is trouble-free, as the Vagar runway is long enough (5902 x 98 feet) to accommodate such a private jet.

Some 53,000 people lived in the Faroe Islands as of 2021. One of the most popular activities is bird and plant watching. To make it easier for residents and tourists to get around, tunnels have been built between some of the archipelago’s 18 islands.

The fourth leg of the round-the-world virtual flight will take place between Vagar and Ivalo (EFIV) in Finland. This is Finland’s northernmost airport.

Click on the link for more flights around the world in flight simulation on my blog.

Categories
Flight Simulation

Around the world in flight simulation (2)

Climbing from Iqaluit (CYFB) to Kangerlussuaq (BGSF)
Climbing from Iqaluit (CYFB) to Kangerlussuaq (BGSF)

For this second leg of the round-the-world flight simulation, the aircraft departs from Iqaluit (CYFB) in appalling weather conditions, but soon find itself above cloud and approaching an area of high pressure. The sky becomes increasingly clear as I approach runway 09 Kangerlussuaq (BGSF) in Greenland.

Virtual flights CYFB BGSF BIIS
Virtual flights CYFB BGSF BIIS

The map shows the planned itinerary: departure from Iqaluit (CYFB), stopover in Kangerlussuaq (BGSF) and arrival at destination in Iceland, at Isafjordur airport (BIIS).

Cessna Citation Longitude on the final approach for the Kangerlussuaq virtual airport (BGSF)
Cessna Citation Longitude on the final approach for the Kangerlussuaq virtual airport (BGSF)

Above, the approach to runway 09. You really need to be well prepared for a destination like BGSF. If the pilot arrives after the tower is closed, the fines are very steep. You can generally expect a little mechanical turbulence on the approach to Runway 09, as the mountains on either side of the aircraft change the airflow.

When I worked at the Iqaluit Flight Service Station (CYFB), many pilots would come up to the tower to plan their flight to BGSF. The most frequent problem was the closing time of the control tower in Kangerlussuaq. They knew that a hefty fine awaited them if they arrived late, often due to stronger-than-expected winds or a departure time that was too tight from Iqaluit. Most of the time, they chose to sleep in Iqaluit and leave the next day, rather than force the issue and end up with a $1500.00 bill to pay.

We also had pilots ferrying single-engine planes over the ocean from Europe to America. In this case, the weather had to be excellent, and the captain had to have the necessary equipment on board to attempt (and I do mean attempt) to survive in the ocean in the event of engine failure.

Cessna Longitude parked at Kangerlussuaq (BGSF)
Cessna Longitude parked at Kangerlussuaq (BGSF)

Above, a partial view of Kangerlussuaq’s virtual airport (BGSF), with the Cessna Citation Longitude at a standstill. On the other side of the runway (invisible here), the airport receives military aircraft.

Climbing from (BGSF) Kangerlussuaq to (BIIS) Isafjordur
Climbing from (BGSF) Kangerlussuaq to (BIIS) Isafjordur

The next day, after a stopover in Kangerlussuaq, it’s time to continue on to Isafjordur. Take-off is on runway 27. The pitot tube heating system and icing protection are activated before entering the cloud layer.

Airborne from the Kangerlussuaq (BGSF) airport
Airborne from the Kangerlussuaq (BGSF) airport

Flying in real weather makes for unexpected screenshots.

The Cessna Longitude arrives over Iceland in flight simulation
The Cessna Longitude arrives over Iceland in flight simulation

Above, the relief of Iceland shortly before arrival at Isafjordur airport (BIIS). As expected, the sky is clear.

Approaching Isafjordur (BIIS) with the Asobo Cessna Citation Longitude
Approaching Isafjordur (BIIS) with the Asobo Cessna Citation Longitude

The approach to Isafjordur is demanding, especially when flying a jet like the Cessna Citation Longitude. You have to save extra speed in the sharp left turn to avoid stalling. I made the turn downhill at 160 knots to get to the runway threshold at the right height. Towards the end of the approach, as the angle of the turn decreases, you immediately reduce speed to around 135 knots.

The Cessna Citation Longitude exits the runway at the Isafjordur virtual airport (BIIS)
The Cessna Citation Longitude exits the runway at the Isafjordur virtual airport (BIIS)

Contrary to real life, it is difficult to have a constant view on a runway when doing a virtual approach in a steep turn. A flight simmer would need 3D glasses to quickly look at the runway and then check the instruments. After two unsuccessful attempts where I found myself a little too high above the runway threshold, I nonetheless managed to land. The instrument panel indicated, however, that the brakes worked pretty hard to slow down the plane, which didn’t really surprise me. There are more relaxing approaches…

The next leg on this trip around the world will be a departure from Isafjordur to Vagar (EKVG) in the Feroe Islands.

Click on the link for more flights around the world in flight simulation on my blog.

Categories
Flight Simulation

Around the world in flight simulation (1)

F-14 Tomcat at work over the sea
F-14 Tomcat at work over the sea

The flight simulation with Microsoft Flight Simulator lets you fly over the planet like never before from the comfort of your own home. As airports around the world transmit weather observations at all times, it’s possible to import this data into the flight simulator and fly virtually in the real weather conditions reported around the globe.

This data enhances the feeling of reality for the virtual pilot, but at the same time complicates his task, as he has to take into account the presence of thunderstorms and icing, surface and upper-level winds, changes in cloud cover, visibility, pressure, and so on.

Today’s virtual pilot must also anticipate that failures of all kinds may affect the flight, especially if he or she owns a high-quality virtual aircraft. The engine(s) may fail, a structural problem may affect the aircraft’s controls and navigation equipment may cease to function. Good planning is essential, just as in real life. And since the brain doesn’t differentiate too much between the real and the virtual, there’s plenty of fun to be had.

So, I’ve decided to fly around the world as a millionaire, at my own pace, i.e., using the types of aircraft that tempt me, and flying the routes that are of particular interest. All of this will be done in real weather, with all its joys and obstacles. I’ll be publishing one of these routes on my blog from time to time.

The initial route departs from Quebec’s Jean-Lesage airport (CYQB), passes through Goose Bay (CYYR), in the Canadian province of Newfoundland and Labrador, heads north to Kuujjuaq and ends in Iqaluit (CYFB).

Virtual Flight 2 will present a few photos of the Atlantic crossing from Iqaluit to Kangerlussuaq (BGSF) in Greenland, to Isafjordur (BIIS) in Iceland .

Isafjordur airport has a challenging approach. I don’t know if the Cessna Citation Longitude will be able to land there in one piece, but I intend to give it a try.

Virtual flight 1.

Virtual flights CYQB CYYR CYVP CYFB
Virtual flights CYQB CYYR CYVP CYFB
Enroute from Quebec City (CYQB) to Goose Bay (CYYR)
Enroute from Quebec City (CYQB) to Goose Bay (CYYR)

Above, the setting sun illuminates the clouds and the Cessna Citation Longitude en route from Quebec City to Goose Bay. At high altitude, the pilot sets the altimeter to the standard atmospheric pressure of 29.92 inches of mercury. Since all the other pilots are doing the same, a safe separation between the aircraft is ensured.

Approaching the Kuujjuaq airport (CYVP) in Quebec.
Approaching the Kuujjuaq airport (CYVP) in Quebec.

The next day, the aircraft is seen approaching Kuujjuaq (CYVP) in Nunavik. The altimeter is set to the airport’s atmospheric pressure to reflect the correct height of the runways in relation to the aircraft. Near the airport, the autopilot is disconnected, and the approach is made manually and visually. The desired speed is around 135 knots for the final.

Departing Kuujjuaq airport (CYVP) with the Cessna Citation Longitude
Departing Kuujjuaq airport (CYVP) with the Cessna Citation Longitude

Above, the jet takes off from Kuujjuaq bound for Iqaluit (CYFB) on Baffin Island in Nunavut.

Enroute to Iqaluit airport (CYFB)
Enroute to Iqaluit airport (CYFB)

The setting sun illuminates the aircraft’s windows. The approach to Iqaluit has begun. The descent is gradual, so as not to cause discomfort to the virtual passengers…

On final for runway 34 of the Iqaluit airport (CYFB)
On final for runway 34 of the Iqaluit airport (CYFB)

Above, the aircraft is on final for runway 34 at Iqaluit (CYFB).

The yellow Iqaluit flight service station (FSS) in Iqaluit (CYFB)
The yellow Iqaluit flight service station (FSS) in Iqaluit (CYFB)

The first leg of our virtual flight around the world ends in Iqaluit, the airport where I worked for two and a half years as Flight Service Specialist (FSS) in the yellow tower on the left of the photo.

Flight service specialists at work at the Iqaluit flight service station in 1989
Flight service specialists at work at the Iqaluit flight service station in 1989

Above, a photo of the interior of the Flight Service Station at the time. One FSS worked on arrivals and departures at the airport, while the other handled transatlantic flights between Europe and mainly the western USA.

Click on the link for more flights around the world in flight simulation on my blog.

Categories
Flight Simulation

The Dornier DO X in flight simulation.

Dornier DO X stops its engines on a Swiss lake with Microsoft's flight simulator
Dornier DO X stops its engines on a Swiss lake with Microsoft’s flight simulator

Microsoft has made the famous German Dornier DO X seaplane available to flight simulation enthusiasts. Designed in 1929 by Claude Dornier, this seaplane far surpassed anything else on the market at the time, in terms of weight, length and power.

Flyingboat Dornier DO X.
Flyingboat Dornier DO X.

Unfortunately, the Germans couldn’t make a commercial success of it, as the aircraft was really too heavy to cover long distances at high altitude in an economical way. What’s more, bad experiences were piling up during the various stopovers: the left-wing canvas caught fire in Portugal, there was some problems with tropical weather, the tail was torn off during a poorly-planned ditching in Passau. What remains of the empennage after the accident can now be seen in the Dornier Museum in Friedrichshafen.

The Germans built the three DO X models at Altenheim, on the Swiss side of Lake Constance, to get round the restrictions imposed by the Treaty of Versailles.

Inside the flyingboat Dornier DO X with Microsoft flight simulator
Inside the flyingboat Dornier DO X with Microsoft flight simulator

One crew member was in charge of controlling and monitoring the engines. He obeyed the captain’s instructions.

Dornier DO X engine control

Dornier DO X engine control
Dornier DO X engine room with Microsoft flight simulator
Dornier DO X engine room with Microsoft flight simulator

The layout of the engines caused headaches for the mechanics. Six propellers pulled the aircraft forward, while another six pushed the DO X. The engines driving the rear propellers received less air than those in front of the aircraft. This led to cooling problems, which reduced reliability on long-distance flights.

Dornier DO-X flyingboat over the Atlantic ocean with MSFS 2020 flight simulator.
Dornier DO-X flyingboat over the Atlantic ocean with MSFS 2020 flight simulator.

The seaplane made its first test flight from Lake Constance (Bodensee)  in 1929. Below, a screenshot of the flight near Lake Brienz in Switzerland.

Dornier DO X flyingboat over Lake Brienz in Switzerland with Microsoft flight simulator.
Dornier DO X flyingboat over Lake Brienz in Switzerland with Microsoft flight simulator.

On its international routes, the DO X made stopovers in several European countries, Africa, South America, Miami, New York and Newfoundland. At the time, Newfoundland was not yet part of Canada. Newfoundlanders issued a stamp to commemorate the plane’s passage through Hollyrod. Naturally, those who kept a copy of the stamp have seen its value rise sharply over the years.

trans-atlantic-west-to-east-per-dornier-do-x-may-1932-air-mail-newfoundland-stamp
trans-atlantic-west-to-east-per-dornier-do-x-may-1932-air-mail-newfoundland-stamp

This legendary seaplane is still admired by aviation enthusiasts today. It’s available as a glue-on model, a desktop model and even as a remote-controlled model.

The Dornier DO X 1929 desktop flyingboat.
The Dornier DO X 1929 desktop flyingboat.
Small-scale radiocontrolled Dornier DO-X
Small-scale radiocontrolled Dornier DO-X

Click on the link for flight simulation articles on my blog.