Categories
Aviation photography

Covid-19 : The Antonov 225 lands in Mirabel, Québec.

On Friday May 1st 2020, Quebec received a shipment of medical equipment destined to the people fighting COVID-19. An Antonov 225 was carrying the goods. The flight was organized thanks to a joint collaboration between Nolinor, Momentum Solutions and Antonov Airlines.

Departing from Tianjin, China, the plane made a stopover in Anchorage, Alaska, before continuing its flight over Canada towards the province of Quebec.

The Antonov 225 carrying medical supplies for Canada makes a stopover in Anchorage, Alaska.
The Antonov 225 carrying medical supplies for Canada makes a stopover in Anchorage, Alaska.

The arrival of the Antonov 225 in Anchorage was announced in advance by the media, which allowed a large crowd to stand near the airport and monitor the approach of the aircraft. The following link allows you to view the approach and arrival: KTUU Video Antonov 225

At 5:35 on the KTUU video, we can see a Fedex MD-11F. It is worth mentioning, because this was a very impressive plane at the time of its conception, but companies are progressively getting rid of it due to the age and fuel costs associated with its operation.  Today, the aircraft is only used for the transport of goods. The production of aircrafts of this size, with three engines, was stopped years ago. There is a good chance that the Antonov 225 will continue to fly long after the MD-11F has made its last flight. (Edit: The Russians destroyed the Antonov 225 during the invasion of Ukraine)

After taking off from Anchorage in the morning of May 1st, the Antonov 225 arrived in Mirabel, Quebec, in the evening of the same day at around 8:22 p.m. The aircraft’s flight path (ADB3381) could be followed on Flightradar24 at the time of its approach for Mirabel (CYMX).

The Antonov 225 ADB3381 on final for Mirabel airport in Canada on May 1st 2020.
The Antonov 225 ADB3381 on final for Mirabel airport in Canada on May 1st 2020.

We can see on the Flightradar24 screen capture that a helicopter (C-GSTV) is positioned to film the arrival of the world’s biggest aircraft. It is an AS 350 BA from TVA, a French-language news media in Quebec.

The Québec TVA news helicopter C-GSTV.
The Québec TVA news helicopter C-GSTV.

Source : FlightAware.

The Antonov 225 arrives in Mirabel from Anchorage on May 1st 2020.
The Antonov 225 arrives in Mirabel from Anchorage on May 1st 2020.

Photo taken by Martin Chevalier

YQBspotting has posted a very interesting video of the Antonov 225 arriving with its cargo of medical equipment in Mirabel, Quebec.

Andy St-André, from TVA, posted a video of the unloading of medical equipment on his Twitter account. 

The photo below shows the unloading operation. The employees wore protective equipment against the coronavirus.

Unloading the Antonov 225 at Mirabel airport in Québec during the COVID-19 crisis.
Unloading the Antonov 225 at Mirabel airport in Québec during the COVID-19 crisis.

Photo : Joël Lemay/Agence QMI.

Several challenges were encountered for this flight to be a success: the language barrier, the verification of equipment quality (contaminated material is not of a big help), the airport operation’s requirements from China, customs limited hours of operation, maximum daily time in service for the Antonov 225 crew, international competition for slot times and orders, initiatives from some countries to acquire shipments not intended for them, etc. But finally, after hard work, Quebec finally received the precious cargo.

The last video from YQBspotting shows the Antonov 225’s departure. 

Click on the link for more articles on aviation photography on my blog.

Categories
Flight Simulation

Losing four engines on a C-130 Hercules in flight simulation

A virtual C-130 belonging to the Blue Angels is taxiing at the High River airport, in Alberta.
A virtual C-130 belonging to the Blue Angels is taxiing at the High River airport, in Alberta.

Wanting to add an almost impossible flight in the “unhinged virtual flights” section of my web site, I tried a flight with the Blue Angels C-130 Hercules (Captain Sim) where the aircraft gradually lost all of its engines.

The Blue Angels C-130 Hercules waiting in line behind a single engine aircraft at the High River airport.
The Blue Angels C-130 Hercules waiting in line behind a single engine aircraft at the High River airport.

I am aware that the Blue Angels mechanics are real professionals, so I assumed that the engine failures were caused by an unknown reason.

A virtual Blue Angels Lockheed C-130 Hercules takes-off from the High River (CEN4) Canadian airport in Alberta.
A virtual Blue Angels Lockheed C-130 Hercules takes-off from the High River (CEN4) Canadian airport in Alberta.

The take-off was made without problem from the Canadian High River (CEN4) airport. This free airport was designed by Vlad Maly and is available through ORBX. The aircraft leaves the 4150 feet runway heading to the Coeur d’Alène airport (KCOE) in United States.

Eventually, the first engine stops. This does not cause a problem. The propeller is feathered and the gradual climbing continues.

The C-130 Hercules loses its first engine.
The C-130 Hercules loses its first engine.

The second engine stops. The pilot must forget the initial destination. Bonners Ferry (65S) becomes the alternate airport since the 4000×75 feet runway is good enough for the C-130.

The second engine has just stopped on this C-130 Hercules.
The second engine has just stopped on this C-130 Hercules.
Double engine failure for this virtual Blue Angles C-130 Hercules.
Double engine failure for this virtual Blue Angles C-130 Hercules.

The third engines gives way. A slow descent starts. Bonners Ferry is not very far. The airport is at an altitude of 2337 ft asl.

The aircraft is volontarily flown at a higher altitude than what would normally be requested for a normal approach, just in case the fourth engine stops. When three engines stop after the same refueling, the pilot has the right to think that what feeds the fourth engine can also cause problems.

Three engine failures on this virtual Blue Angels C-130 Hercules.
Three engine failures on this virtual Blue Angels C-130 Hercules.

The highest mountains are now behind the aircraft.

Virtual C-130 Hercules aircraft with three engine failures enroute to the Bonners Ferry airport.
Virtual C-130 Hercules aircraft with three engine failures enroute to the Bonners Ferry airport.

The Bonners Ferry (65S) runway is in sight.

Virtual C-130 Hercules aircraft with three engine failures, by the Bonners Ferry's runway.
Virtual C-130 Hercules aircraft with three engine failures, by the Bonners Ferry’s runway.

The fourth engine stops. The flaps will not be functional for the landing.

From now on, the pilot should save the virtual flight a few times since it is possible that several trials will be necessary to glide sucessfully to the airport. This is the fun of virtual flight.

The four engines have now failed on that virtual C-130 aircraft.
The four engines have now failed on that virtual C-130 aircraft.

The C-130 Hercules has become a big glider. When the speed is maintained, the aircraft loses more 1000 feet per minute. It is easier to feel the aircraft’s inertia.

The wheels will be brought out only when necessary since the gear adds a lot of drag.

From the position indicated in the picture below, it is impossible to arrive to the airport in a straight line: the aircraft will glide over the airport. In the picture, the aircraft seems to be on a good path for landing, but it is an illusion caused by the wide-angle format chosen for the screen capture.

The aircraft is definitely too high. It is impossible to use the flaps to increase the rate of descent.

Lockheed C-130 Hercules virtual aircraft with four engine failures on the approach to the Bonners Ferry's virtual airport (65S).
Lockheed C-130 Hercules virtual aircraft with four engine failures on the approach to the Bonners Ferry’s virtual airport (65S).

One must choose between 1) sideslips 2) a 360 degree turn to lose altitude or 3) multiple steep turns perpendicular to the runway to increase to distance to the airport.

What would you choose?

There is no universal method. The 360 degree turn is riskier but can prove efficient. An Airbus A330-200 flown by Quebecer Robert Piché that had lost all of its engines landed successfully in the Açores in 2001 after attempting a last minute 360 degree turn to lose altitude. But here, I did not believe there was enough altitude to safely complete the turn and reach the runway.

A few steep turns were made to extend to ride to the airport. Why steep turns? In order to avoid getting closer to the airport before an acceptable altitude was reached. This method helped keep an eye on the runway at all times to verify if the slope to the airport was still acceptable.

Fourty degree turn to the right on the approach to the Bonners Ferry's airport.
Fourty degree turn to the right on the approach to the Bonners Ferry’s airport.
Steep turn to the left to extend the distance to the Bonners Ferry airport.
Steep turn to the left to extend the distance to the Bonners Ferry airport.

I tried the three methods, always starting from the same saved flight (photo 10). After several sideslips, the aircraft was always approaching the airport too quickly. There was not enough time to lose altitude. The final speed always happened to be too high to stop a C-130 without flaps or thrust reversers.

The 360 degree turn, be it right or left, with different angles and a reasonable speed, always incurred a loss of altitude that brought the aircraft 200 to 300 feet short of the threshold.

Finally, after a few steep turns, the aircraft was positioned on final with the appropriate speed and altitude.

View of the Lockheed C-130 Hercules with four engine failures, on the approach for Bonners Ferry (65S).
View of the Lockheed C-130 Hercules with four engine failures, on the approach for Bonners Ferry (65S).

A few last seconds adjustments, to reposition the aircraft in the center of the runway.

Speed 150 knots. End of the turn for the Bonners Ferry's airport.
Speed 150 knots. End of the turn for the Bonners Ferry’s airport.

At 140 kts, but without any reverse thrust, the whole runway should be necessary to stop the aircraft.

Speed 140 knots, aligned with the Bonners Ferry's runway.
Speed 140 knots, aligned with the Bonners Ferry’s runway.

The landing was smooth and the aircraft stopped short of the threshold.

For an unknown reason, the anemometer was still indicating a 10 kts airspeed, even when the aircraft had stopped.

C-130 cargo aircraft on the Bonners Ferry's runway.
C-130 cargo aircraft on the Bonners Ferry’s runway.
Lockheed C-130 Hercules virtual aircraft after landing at the Bonners Ferry (65S) airport.
Lockheed C-130 Hercules virtual aircraft after landing at the Bonners Ferry (65S) airport.
C-130 Hercules aircraft in Bonners Ferry.
C-130 Hercules aircraft in Bonners Ferry.

Try such a flight in the virtual mode. The worst that can happen is that you have fun!

For more near impossible flights, head to:

Unhinged Virtual Flights

Categories
Flight Simulation

Flight simulation (FSX): a C-17A at the Block Island airport (KBID) in USA

Alex Geoff, the ORBX Block Island (KBID) virtual airport designer, asked flight simulator enthousiasts to try to operate the biggest aircraft possible on that airport ‘s 2502 ft runway.

Canadian military aircraft C17-A ready for take-off runway 10 at the Block Island (KBID) virtual airport in United States (FSX)
Canadian military aircraft C17-A ready for take-off runway 10 at the Block Island (KBID) virtual airport in United States (FSX)

Naturally, we are talking about a virtual flight. You must then forgive the landing of an aircraft which, in real life, would destroy the runway. You also have to disregard the fact that numerous trees would have to be chopped if the aircraft would elect to use the taxiway. I was almost forgetting the pilots and airport manager that would have to be fired following the authorized manoeuver.

The context of the flight having been presented, here is the data that will allow flight simulator enthousiasts to replicate the circuit around the Block Island airport with a Virtavia C-17A.

Contrary to the Cessna type aircrafts normally evolving around the airport, the total weight of the canadian military C-17A used for the flight was 405,000 pounds. The fuel was adjusted to 50% in all four tanks. Both pilots agreed to skip lunch in order to avoid adding any extra weight to the beast…

Flaps were adjusted to 2/3. I backed the aircraft to the beginning of the runway, applied the brakes, applied full throttle, waited for maximum regime, released the brakes and used ground effect to lift the aircraft before it was too late. The take-off was done on runway 10 with a 12 kts and 70 degree crosswind.

Canadian military aircraft C17-A airborne runway 10 at the Block Island (KBID) virtual airport in United States (FSX)
Canadian military aircraft C17-A airborne runway 10 at the Block Island (KBID) virtual airport in United States (FSX)

Then, four right turns were made : 190°, 280°, 010° and 100°. During the flight, the aircraft’s altitude never went above 2000 feet.

Canadian military aircraft C17-A turning downwind runway 10 at the Block Island (KBID) virtual airport in United States (FSX)
Canadian military aircraft C17-A turning downwind runway 10 at the Block Island (KBID) virtual airport in United States (FSX)

Wheels and flaps were brought down in base so that I did not have to make serious adjustments on final.

Canadian military aircraft C17-A turning base runway 10 at the Block Island (KBID) virtual airport in United States (FSX)
Canadian military aircraft C17-A turning base runway 10 at the Block Island (KBID) virtual airport in United States (FSX)
Canadian military aircraft C17-A on long final runway 10 at the Block Island (KBID) virtual airport in United States (FSX)
Canadian military aircraft C17-A on long final runway 10 at the Block Island (KBID) virtual airport in United States (FSX)
Canadian military aircraft C17-A short final runway 10 at the Block Island (KBID) virtual airport in United States (FSX)
Canadian military aircraft C17-A short final runway 10 at the Block Island (KBID) virtual airport in United States (FSX)

The speed eventually went down to 128 kts and, while the aircraft was still about two feet in the air, I used the airbrakes. The thrust reversers were fully activated two feet before touch-down (continued pressure on F2) since they take time to rev up. That is not necessarily the proper way to do it and you can wait one more second, until the wheels touch the runway, to use the reversers. The main gear touched at the very beginning of the runway and maximum breaking was then applied.

Canadian military aircraft C17-A landing at the Block Island (KBID) virtual airport in United States (FSX)
Canadian military aircraft C17-A landing at the Block Island (KBID) virtual airport in United States (FSX)

It was possible to exit on the taxiway without having to back-track on the runway. The environment always coming second, some trees were cut so that there were no contacts with the aircraft.

Canadian military aircraft C17-A exiting runway 10 at the Block Island (KBID) virtual airport (FSX) in United States
Canadian military aircraft C17-A exiting runway 10 at the Block Island (KBID) virtual airport (FSX) in United States
Canadian military aircraft C17-A taxiing at the Block Island (KBID) virtual airport (FSX) in United States
Canadian military aircraft C17-A taxiing at the Block Island (KBID) virtual airport (FSX) in United States

If you decide to try it out, think of saving the flight when you are on final, in case you are not satisfied with your performance during the landing (scrapped aircraft, destroyed houses and vehicles in the neighborhood, burned forest at the end of runway 10, collateral victims, etc.).

Canadian military aircraft C17-A at the Block Island (KBID) virtual airport (FSX) in United States
Canadian military aircraft C17-A at the Block Island (KBID) virtual airport (FSX) in United States

Good luck!

For other challenging virtual flights, head towards the flight simulation section of the present web site.

For more articles on flight simulation on my web site, click on the following link : Flight simulation