The picture above shows a virtual MD-11 aircraft with the VASP livery over Sao Paulo. In the flight simulator, I positioned it on final for the Guarulhos international airport in Brazil (IATA: GRU, ICAO: SBGR). This MD-11 was created by PMDG.
The landscape is modelized by ORBX and is made of overlapping layers of their different products in order to achieve this final aspect. There is first FTX Global Base Pack, then FTX Global openLC South America and FTX Global Vector. The last touch is added through FTX Global Trees HD, but it is not really visible here due to the late hour.
The two pictures above show a MD-11 just airborne from Innsbruck, in Austria. The landscape of that region, in real life or virtual mode, is absolutely stunning. I am essentially using the FSX flight simulation platform for now, but I am always monitoring the progress made with Aerofly FS2. The virtual cloud textures for the three pictures are modelized by Rex Simulations and the weather engine used for the flights was FSGRW.
The MD-11 is an extremely interesting aircraft to fly in the flight simulation mode but it seems that PMDG is not bringing the aircraft up to date to follow the evolution of Microsoft operating systems. It has not been modified neither to work with P3D or other virtual flight platforms. Nevertheless, if customers start expressing their interest in that aircraft, I am convinced that PMDG would allow a bit more research in order to bring that MD-11 with today’s standards of flight simulation ( https://www.facebook.com/pmdgsimulations ).
The documentation offered for the MD-11 by PMDG is really complete. All the articles written in the PC Pilot magazine on how to fly the aircraft are also still available today in only one download.
Here are a few modified screen captures of a recent virtual flight made with the Captain Sim’s B-52.
The high quality of the modelized clouds and of the landscape in the background helped create screen captures that were even more realistic. FSX was the flight simulation platform used for the flight. REX Simulations made the virtual cloud textures.
The landscape is a creation of ORBX. At the base of the three screen captures were the following ORBX products: FTX Global Base Pack, FTX Global Vector, FTX Global Open LC North America, FTX Global Trees HD and NA Southern California. The time for the flight was early in the morning.
In the picture below, a few modifications were made using Photoshop to induce a feeling of speed. When comes the time to modify the screen capture of a virtual aircraft with an image editing software, the same rules apply as for a normal picture: moderation gives better results.
The sound of the Boeing B-52’s eight engines is quite impressive. Despite the enormous power available for take-off, the flight simulation enthousiast cannot simply apply full power and hope that the military jet will get airborne. By the book procedures have to be followed, otherwise there won’t be any take-off. A parachute can be deployed when landing for a better visual effect, but the flight simulator will not include it in its calculations for the required landing and breaking distance.
The reason for the delays and the positive side for the consumers
Digital Aviation & Aerosoft have finally completed their long awaited project to make a virtual CRJ-900ER and CRJ-700ER Bombardier regional jets. Months later than expected, the flight simulation enthusiasts can now try those two new virtual aircrafts. The CRJ is mostly used to link smaller airports and remote areas to the main hubs. The aircraft can rapidly reach its cruising altitude and stay there a long time, but it is not intended to be a really fast aircraft.
The company explains that, since the beginning, it had underestimated the complexity of the project and, because of ongoing delays, ended up having to catch up with the competition. In order to offer a superior product than the competition, Digital Aviation and Aerosoft had to review what it initially considered as an almost completed project.
The CRJ-900ER and CRJ-700ER had their exterior almost completely redone; the consumer now ends up with a much better looking aircraft. The project manager says that it is only due to the patience and kindness of potential customers that the project was saved. It pays to be nice!
The first flight with the CRJ
For the first flight, the manual recommends to first choose and activate one of the default FSX aircraft with the engine running. The pilot then selects the CRJ of his choice. It seems that doing so will prevent a lot of problems.
The virtual 2D cockpit
The virtual 2D cockpit helps save a few FPS. An easy access to the different sections of the cockpit is available since it is divided in several logical panels numbered from 1 to 9.
Navigation
The virtual pilot has access to an updated NavDataPro (May 2017) database for air navigation. It is the world’s most used database in aircraft. The aircraft is also compatible with the popular Navigraph database.
How does a standard computer deals with the new CRJ?
I have flown both aircrafts on several virtual airports like St. Maarten (Fly Tampa St. Maarten), Montreal international (Fly Tampa Montreal), Denver international (Flightbeam Studios) and Valdez (ORBX) without problems with regards to the computer’s processors and FPS. It was certainly out of question to try to land at the Courchevel airport (LLH Creations), with its short sloped runway, but a low pass at high speed caused no stutters.
Flying the CRJ at low speed
The CRJ offers a good margin of manoeuver when it comes to flying at low speed. But due to the position of the engines, the aircraft’s nose will raise rapidly when the throttle is brought back to idle. In a constant and progressive descent, that does not cause a problem. But if the manoeuver is done on short final when the aircraft is still above 50 feet, the rapid change in the aircraft’s attitude could induce a stall.
The air brakes
One cannot rely too much on the air brakes to slow down the CRJ. They have limited efficiency, both for the virtual and the real aircraft.
Floating tendency
If the aircraft arrives over the threshold at a higher speed than recommended, it will float for a long distance before finally touching down.
Landing and take-off distances
The CRJ-900 and CRJ-700 operate on relatively short runways. The CRJ-700 needs 5040 feet for take-off (at maximum weight) and landing, under the standard ICAO conditions. The CRJ-900 requires 6060 feet for take-off and 5260 feet for landing. The maximum range has been established to be around 1300 and 1400 nm.
Managers that facilitate the use of the CRJ
For the CRJ, Digital Aviation & Aerosoft have created managers that allow choosing the number of passengers, cargo, as well as calculating the fuel weight, the center of gravity and the amount of trim required. There is even a FS2 Crew option if desired. Another manager facilitated the addition of liveries.
The flight simulation enthusiasts had been anticipating the arrival of that regional jet for a long time; some did not believe anymore that it would one day become a reality (that includes the company too!). The flight simmers now have access to a world class and high quality regional jet.
For more articles on flight simulation on my web site, click on the following link : Flight simulation
The following pictures show a virtual flight in United States. The trip is from KBLU ( Blue Canyon-Nyack) to Limberlost Ranch (CA21) then to Gansner Field (201). Landing and taking-off from Limberlost Ranch is a nice challenge.
For this flight simulation, I used the FSX flight simulator, the Carenado Cessna C-207 equipped with bush tires and REX clouds.
Airborne from KBLU.
Enroute from KBLU (5284 ft ASL) to Limberlost Ranch and it’s 1700 ft grass runway (1650 ft ASL and about 23 NM east of KBLU), you pass by the Nevada County airport (O17) that has also received a special treatment from ORBX.
It might be necessary to fly over the Limberlost Ranch airport before starting an approach, so that you have an idea of what to expect on final.
Limberlost Ranch has a sloped runway (in fact, a multiple slope runway). Part of it is asphalted, but most of it is grass. You make the approach for the grass section. Note that there is a fence on the side at the beginning of the runway. The virtual aircraft should not touch the field before it has passed the fence (for more realism).
With a bit of crosswind, taking-off from this short runway can be demanding. The aircraft feels really sloppy (and I mean it) and behaves more like a boat than a plane during the acceleration to get airborne. It is essential to avoid the line of trees on the left side of the runway. A bit of flaps is required as it is the norm for soft runway operations. Careful but essential use of the rudder will also make your take-off a success.
Enroute to Gansner Field.
Gansner Field is about 41 nm north of KBLU. The virtual airport is very well made and nestled in a valley. Coming in from KBLU, you need to pass 6000 ft mountains before diving for that 3419 ft asl asphalt runway.
The fully enjoy those virtual flights, it is suggested that you install the different layers of Orbx products (Global, Vector, Open LC) as well as the KBLU virtual scenery.
Have a good flight!
For more articles on flight simulation on my web site, click on the following link : Flight simulation
The screen capture above represents a Beech Staggerwing virtual aircraft available through the Carenado company, in flight early morning on a winter day over Saskatchewan, Canada.
Houses and the general scenery are a creation of theOrbx company, through their FTX Global Base Pack, FTX Global Vector and FTX Global openLC North America products.
The virtual clouds are a creation of REX Texture Direct and Soft Clouds. There is also an additional touch of drama through the use of Cumulus X. The virtual flight platform used was FSX.
In April 2017, Orbx again released new improved virtual airports for North and South America, available for free for flight simulation enthousiasts already using their commercial products. That was one more reason to go flying in Saskatchewan!
For more articles on flight simulation on my web site, click on the following link : Flight simulation
This virtual Cessna 185F is seen here on final for Roberts Lake (CRL8) in Ontario. Due to the prevailing wind at the time of flight, I had to do the approach overflying the Parry Sound (CNK4) airport runway. Real weather was downloaded through internet.
As you can see, there was some bad weather near the airport. Considering that nightime was coming, it was the last flight of the evening.
C-GNWA belongs to the North-Wrights Airways Ltd company, based in Norman Wells, Northwest Territories. This particular Cessna 185F was built in 1977.
The flight simulation platform used to do the flight was FSX. The virtual clouds are a combination of REX (Texture Direct with Soft Clouds) and Cumulus X. The screen capture was slightly edited using an image editing software in order to optimize the contrasts and brightness.
Vlad Maly, who died in 2016, was the creator of this virtual scenery combining Parry Sound and Roberts Lake. It is sold by Orbx.
For more articles on flight simulation on my web site, click on the following link : Flight simulation
For this flight, you will need the Antarctica X flight simulation software made by Aerosoft.
The maintenance of BAS Twin Otters and their Dash-7 is done in Calgary, Canada, and head to Antarctica during the austral summer, between October and March. So if you want to try a flight simulation with a Twin Otter or a Dash-7 from Chile to Antarctica, pick one of those months as it is more realistic.
Since it would be a bit long to make all the virtual flights from Canada to Antarctica, I chose to do the last three legs to see what the landscape looks like.
A Twin Otter is normally approved for a maximum take-off weight of 12,500 pounds. But with skis weighing 800 pounds and additional fuel required to fly longer legs, BAS (British Antarctic Survey) has arranged to have their Twin Otters approved at 14,000 pounds. Even at this weight, the aircraft could still operate on one engine.
First, the aircraft departs La Florida airport (SCSE) in Chile, after a mandatory fuel stop before its next destination, the El Tepual de Puerto Montt airport (SCTE), also in Chile.
This virtual flight with the Twin Otter last about 4:25 hours (696 nm) with a heading of 185 degrees.
For the screen captures, FTX Global, FTX Vector and Pilot’s FS Global 2010 were installed. Orbx has also reworked the original El Tepual de Puerto Montt airport to include some people, aircrafts and new buildings. It makes for a more interesting destination.
The next flight is from the El Tepual de Puerto Montt airport (SCTE) to Punta Arenas (SCCI), both in Chile.
This flight, made low across the Andes, absolutely requires good weather. You will have to climb to 17,000 feet to make the direct route between the airports.
There are often spectacular views available to the virtual pilot. Yes, the BAS Twin Otter is flown by only one pilot, but there is always somebody else accompanying him.
Don’t forget to lean the mixture during the climb. Also use some additional oxygen (!!) if you don’t want to start singing and flying in circles after a while. Again, pay attention to the mixture during the descent, considering that you will be losing close to 17,000 feet.
The Punta Arenas airport, straight from FSX, is not an interesting airport to look at. It is a very bare airport, with just a single building and a VOR.
But since the BAS pilot do that mandatory leg just before heading to Antarctica, I chose not to change the route. The general direction for the flight to Punta Arenas was 164 degrees and the duration approximately 4:28 hours. You can obviously accelerate the process once the aircraft is established at its flying altitude.
The last flight is from Punta Arenas, Chile, to Rothera, Antarctica.
The Twin Otter will take between six and seven hours on an average heading of 162 degrees to cover the distance between Punta Arenas (SCCI) and Rothera (EGAR).
The runway at Rothera is made of gravel and is 2953 feet long. That is plenty for the Twin Otter and the DASH-7. Before you make the flight, go into the aerosoft/Antarctica X file in your flight simulator and click on the “LOD 8.5” option (the default is at LOD 4.5). It will give you much better details when you are approaching Antarctica.
The Airliner World magazine had an excellent article on the BAS operations in Antarctica in its March 2017 edition. It included plenty of interesting pictures and detailed explanations on what is expected from pilots and personnel working for BAS. I compared the Rothera virtual airport with the real one through the available pictures in Airliner World and was pleasantly surprised with the level of accuracy of the details.
The BAS always prepares itself for the worst: “[It] carries parts valued at around $5m, including a replacement engine for each aircraft, spare props and undercarriage components”.
“A new development for the Air Unit has been its work with the RAF, using C-130 Hercules transports to airdrop supplies into the field. They fly from Punta Arenas and drop fuel to support our science programmes on the Ronne Ice Shelf. […] It is all part of their training system and the accuracy they drop to is very impressive. They might drop 250 drums, think how many Twin Otter trips that would have been for us (48 or more than 400 flying hours)”.
Aerosoft has made an excellent job in replicating the buildings in Rothera, BAS’s main research station in Antarctica. The biggest hangar can accommodate three Twin Otters and a Dash-7 altogether.
When your flight is over, do not forget to change the settings back to LOD 4.5 for Antarctica in your aerosoft/Antarctica X files.
The flight simulator enthousiast will have fun trying this short flight ( 14 minutes) from the Eagle County virtual airport (KEGE) to the Telluride virtual airport (KTEX). The virtual flight, using FSX, was made during winter, on January 8th. The shots below represent an idea of what is visible while flying toTelluride. Use 14,000 feet, it should do it…
There are lots of beautiful mountains between KEGE and Telluride, and also some unpredictable weather…
The expected ceiling at Telluride was 8500 ft. On the way to the airport, the clouds and visibility were sometimes obscuring the mountains.
Telluride is a very inviting airport for a MD-11. The 7000 feet runway itself does not represent a big challenge, although its 100 feet are a bit narrow: this aircraft would normally require a 150 feet wide landing surface.
The virtual VFR approach made with the MD-11 was the most expensive way to do the trip, since it required a fly-by and a 270 degree turn to the right to align with runway 09.
The 270 degree turn at a 10-20 degree bank allowed to transit from 14,000 to 10,000 ft without doing anything radical. Just a turn while descending and gradually loosing speed to arrive at around 160 kts on final. The aircraft was now installed on long final, with flaps set at 50 degrees.
The high altitude runway’s 9078 feet msl elevation meant the pilots dealt with lower air density and heavy weight when approaching and, as such, the airspeed had to be adjusted accordingly to prevent stalling on final.
Here is a view from the Telluride tower…
Now with a view like that, you would not consider coming in IFR…!
To prevent an overshoot and some additional expenses in fuel (which are already skyrocketing), an optimal approach was required.
Most accidents with the MD-11 happen when the pilot pushes on the stick when there is a rebound with the nose wheel, thus creating an even stronger rebound. When there is a rebound, there is no need to push on the stick, just wait and the aircraft sets itself quickly.
Now with max breaking and thrust reversers…
The MD-11 can easily turn at the first taxiway at Telluride. But in order to capture a wider view of the airport, I exited at the last taxiway (again adding to the already enormous expense in fuel…)
The employee on the ramp was worried that the MD-11 lower winglet would scratch N900SS while taxiing. But there was plenty of space (11 inches)…
The MD-11 was parked temporarily in a spot needed by every aircraft. It was necessary to unload quickly the precious cargo and get out of the way.
Some expert handling would be needed to help move back that MD-11 close to the runway. But that was the Telluride’s airport manager problem and he had promised he would have something ready!
The virtual scenery from departure to destination is a creation of ORBX programmers and the virtual MD-11 is made by PMDG Simulations (I am not sure it works with P3D though). For the weather, I used REX Simulations as the weather engine and REX and Cumulus X for the cloud textures. (Edit: PMDG does not support it’s MD-11 anymore).
For other challenging virtual flights, head towards the flight simulation section of my web site, under “challenging virtual flights”: there is something for everyone!
For more articles on flight simulation on my web site, click on the following link : Flight simulation
Alex Geoff, the ORBX Block Island (KBID) virtual airport designer, asked flight simulator enthousiasts to try to operate the biggest aircraft possible on that airport ‘s 2502 ft runway.
Naturally, we are talking about a virtual flight. You must then forgive the landing of an aircraft which, in real life, would destroy the runway. You also have to disregard the fact that numerous trees would have to be chopped if the aircraft would elect to use the taxiway. I was almost forgetting the pilots and airport manager that would have to be fired following the authorized manoeuver.
The context of the flight having been presented, here is the data that will allow flight simulator enthousiasts to replicate the circuit around the Block Island airport with a Virtavia C-17A.
Contrary to the Cessna type aircrafts normally evolving around the airport, the total weight of the canadian military C-17A used for the flight was 405,000 pounds. The fuel was adjusted to 50% in all four tanks. Both pilots agreed to skip lunch in order to avoid adding any extra weight to the beast…
Flaps were adjusted to 2/3. I backed the aircraft to the beginning of the runway, applied the brakes, applied full throttle, waited for maximum regime, released the brakes and used ground effect to lift the aircraft before it was too late. The take-off was done on runway 10 with a 12 kts and 70 degree crosswind.
Then, four right turns were made : 190°, 280°, 010° and 100°. During the flight, the aircraft’s altitude never went above 2000 feet.
Wheels and flaps were brought down in base so that I did not have to make serious adjustments on final.
The speed eventually went down to 128 kts and, while the aircraft was still about two feet in the air, I used the airbrakes. The thrust reversers were fully activated two feet before touch-down (continued pressure on F2) since they take time to rev up. That is not necessarily the proper way to do it and you can wait one more second, until the wheels touch the runway, to use the reversers. The main gear touched at the very beginning of the runway and maximum breaking was then applied.
It was possible to exit on the taxiway without having to back-track on the runway. The environment always coming second, some trees were cut so that there were no contacts with the aircraft.
If you decide to try it out, think of saving the flight when you are on final, in case you are not satisfied with your performance during the landing (scrapped aircraft, destroyed houses and vehicles in the neighborhood, burned forest at the end of runway 10, collateral victims, etc.).
Good luck!
For other challenging virtual flights, head towards the flight simulation section of the present web site.
For more articles on flight simulation on my web site, click on the following link : Flight simulation
The Boeing B-52 is a Captain Sim creation and the Montreal airport is made by FlyTampa. The remaining scenery is designed by ORBX. Here are few basic informations for those of you who would be tempted to try a flight immediately after the download is completed. For the takeoff: pitot heat, 100% flaps down, YAW SAS Switch Engage, stabilizer trimmed, full throttle within four seconds, climb between 1500 and 2000 ft/min. The climb with flaps down is done at 180 kts. Adjust the thrust so that you have time to bring the flaps in totally; use 230 kts as maximum for zero degree flaps. Once in flight, brake to stop the wheels rotation then bring the gear up (although not before reaching 1000 ft agl).
For a normal descent: (note: keep 20 kts in surplus of the proposed speed when the aircraft is turning). The descent is done at about 240 kts, with airbrakes 4, gear down, throttle to idle. À 220 kts, you may start applying flaps (they take 60 secondes to be fully extended). Once in downwind, use153 kts with airbrakes 4 (for 225,000 lbs). No more than 30 degrees turns. The rollout is done at no more than133 kts.
The touchdown with airbrakes full up is done at 110 kts IAS. The drag chute is then deployed (never above 135 kts). Keep a slight angle only, with the rear wheels touching first. When taxiing, turn the YAW switch and the airbrakes to “OFF”. Those are only basic infos. By the way, when the drag chute is deployed, you will not see a difference in the breaking distance; the chute is there only for “graphic” reality. Have a good flight!
For more articles on flight simulation on my web site, click on the following link : Flight simulation