Categories
Flight Simulation

Losing four engines on a C-130 Hercules in flight simulation

A virtual C-130 belonging to the Blue Angels is taxiing at the High River airport, in Alberta.
A virtual C-130 belonging to the Blue Angels is taxiing at the High River airport, in Alberta.

Wanting to add an almost impossible flight in the “unhinged virtual flights” section of my web site, I tried a flight with the Blue Angels C-130 Hercules (Captain Sim) where the aircraft gradually lost all of its engines.

The Blue Angels C-130 Hercules waiting in line behind a single engine aircraft at the High River airport.
The Blue Angels C-130 Hercules waiting in line behind a single engine aircraft at the High River airport.

I am aware that the Blue Angels mechanics are real professionals, so I assumed that the engine failures were caused by an unknown reason.

A virtual Blue Angels Lockheed C-130 Hercules takes-off from the High River (CEN4) Canadian airport in Alberta.
A virtual Blue Angels Lockheed C-130 Hercules takes-off from the High River (CEN4) Canadian airport in Alberta.

The take-off was made without problem from the Canadian High River (CEN4) airport. This free airport was designed by Vlad Maly and is available through ORBX. The aircraft leaves the 4150 feet runway heading to the Coeur d’Alène airport (KCOE) in United States.

Eventually, the first engine stops. This does not cause a problem. The propeller is feathered and the gradual climbing continues.

The C-130 Hercules loses its first engine.
The C-130 Hercules loses its first engine.

The second engine stops. The pilot must forget the initial destination. Bonners Ferry (65S) becomes the alternate airport since the 4000×75 feet runway is good enough for the C-130.

The second engine has just stopped on this C-130 Hercules.
The second engine has just stopped on this C-130 Hercules.
Double engine failure for this virtual Blue Angles C-130 Hercules.
Double engine failure for this virtual Blue Angles C-130 Hercules.

The third engines gives way. A slow descent starts. Bonners Ferry is not very far. The airport is at an altitude of 2337 ft asl.

The aircraft is volontarily flown at a higher altitude than what would normally be requested for a normal approach, just in case the fourth engine stops. When three engines stop after the same refueling, the pilot has the right to think that what feeds the fourth engine can also cause problems.

Three engine failures on this virtual Blue Angels C-130 Hercules.
Three engine failures on this virtual Blue Angels C-130 Hercules.

The highest mountains are now behind the aircraft.

Virtual C-130 Hercules aircraft with three engine failures enroute to the Bonners Ferry airport.
Virtual C-130 Hercules aircraft with three engine failures enroute to the Bonners Ferry airport.

The Bonners Ferry (65S) runway is in sight.

Virtual C-130 Hercules aircraft with three engine failures, by the Bonners Ferry's runway.
Virtual C-130 Hercules aircraft with three engine failures, by the Bonners Ferry’s runway.

The fourth engine stops. The flaps will not be functional for the landing.

From now on, the pilot should save the virtual flight a few times since it is possible that several trials will be necessary to glide sucessfully to the airport. This is the fun of virtual flight.

The four engines have now failed on that virtual C-130 aircraft.
The four engines have now failed on that virtual C-130 aircraft.

The C-130 Hercules has become a big glider. When the speed is maintained, the aircraft loses more 1000 feet per minute. It is easier to feel the aircraft’s inertia.

The wheels will be brought out only when necessary since the gear adds a lot of drag.

From the position indicated in the picture below, it is impossible to arrive to the airport in a straight line: the aircraft will glide over the airport. In the picture, the aircraft seems to be on a good path for landing, but it is an illusion caused by the wide-angle format chosen for the screen capture.

The aircraft is definitely too high. It is impossible to use the flaps to increase the rate of descent.

Lockheed C-130 Hercules virtual aircraft with four engine failures on the approach to the Bonners Ferry's virtual airport (65S).
Lockheed C-130 Hercules virtual aircraft with four engine failures on the approach to the Bonners Ferry’s virtual airport (65S).

One must choose between 1) sideslips 2) a 360 degree turn to lose altitude or 3) multiple steep turns perpendicular to the runway to increase to distance to the airport.

What would you choose?

There is no universal method. The 360 degree turn is riskier but can prove efficient. An Airbus A330-200 flown by Quebecer Robert Piché that had lost all of its engines landed successfully in the Açores in 2001 after attempting a last minute 360 degree turn to lose altitude. But here, I did not believe there was enough altitude to safely complete the turn and reach the runway.

A few steep turns were made to extend to ride to the airport. Why steep turns? In order to avoid getting closer to the airport before an acceptable altitude was reached. This method helped keep an eye on the runway at all times to verify if the slope to the airport was still acceptable.

Fourty degree turn to the right on the approach to the Bonners Ferry's airport.
Fourty degree turn to the right on the approach to the Bonners Ferry’s airport.
Steep turn to the left to extend the distance to the Bonners Ferry airport.
Steep turn to the left to extend the distance to the Bonners Ferry airport.

I tried the three methods, always starting from the same saved flight (photo 10). After several sideslips, the aircraft was always approaching the airport too quickly. There was not enough time to lose altitude. The final speed always happened to be too high to stop a C-130 without flaps or thrust reversers.

The 360 degree turn, be it right or left, with different angles and a reasonable speed, always incurred a loss of altitude that brought the aircraft 200 to 300 feet short of the threshold.

Finally, after a few steep turns, the aircraft was positioned on final with the appropriate speed and altitude.

View of the Lockheed C-130 Hercules with four engine failures, on the approach for Bonners Ferry (65S).
View of the Lockheed C-130 Hercules with four engine failures, on the approach for Bonners Ferry (65S).

A few last seconds adjustments, to reposition the aircraft in the center of the runway.

Speed 150 knots. End of the turn for the Bonners Ferry's airport.
Speed 150 knots. End of the turn for the Bonners Ferry’s airport.

At 140 kts, but without any reverse thrust, the whole runway should be necessary to stop the aircraft.

Speed 140 knots, aligned with the Bonners Ferry's runway.
Speed 140 knots, aligned with the Bonners Ferry’s runway.

The landing was smooth and the aircraft stopped short of the threshold.

For an unknown reason, the anemometer was still indicating a 10 kts airspeed, even when the aircraft had stopped.

C-130 cargo aircraft on the Bonners Ferry's runway.
C-130 cargo aircraft on the Bonners Ferry’s runway.
Lockheed C-130 Hercules virtual aircraft after landing at the Bonners Ferry (65S) airport.
Lockheed C-130 Hercules virtual aircraft after landing at the Bonners Ferry (65S) airport.
C-130 Hercules aircraft in Bonners Ferry.
C-130 Hercules aircraft in Bonners Ferry.

Try such a flight in the virtual mode. The worst that can happen is that you have fun!

For more near impossible flights, head to:

Unhinged Virtual Flights

Categories
Flight Simulation

The Captain Sim’s B-52 in flight simulation

Here are a few modified screen captures of a recent virtual flight made with the Captain Sim’s B-52 ( https://www.captainsim.com/ ).

Captain Sim's virtual B-52 aircraft in southern California
Captain Sim’s virtual B-52 aircraft in southern California

The high quality of the modelized clouds and of the landscape in the background helped create screen captures that were even more realistic. FSX was the flight simulation platform used for the flight.  REX Simulations made the virtual cloud textures.

The landscape is a creation of ORBX. At the base of the three screen captures were the following ORBX products: FTX Global Base Pack, FTX Global Vector, FTX Global Open LC North America, FTX Global Trees HD and NA Southern California. The time for the flight was early in the morning.

Virtual clouds created by REX. FSX flight simulation platform.
Virtual clouds created by REX. FSX flight simulation platform.

In the picture below, a few modifications were made using Photoshop to induce a feeling of speed. When comes the time to modify the screen capture of a virtual aircraft with an image editing software, the same rules apply as for a normal picture: moderation gives better results.

A virtual B-52 at high speed and low altitude in Southern California.
A virtual B-52 at high speed and low altitude in Southern California.

The sound of the Boeing B-52’s eight engines is quite impressive. Despite the enormous power available for take-off, the flight simulation enthousiast cannot simply apply full power and hope that the military jet will get airborne. By the book procedures have to be followed, otherwise there won’t be any take-off. A parachute can be deployed when landing for a better visual effect, but the flight simulator will not include it in its calculations for the required landing and breaking distance.

Categories
Flight Simulation

Flight Simulation: a B-52 from Montreal to Anchorage, Alaska

Boeing B-52 (FSX) airborne from Montréal Pierre-Elliott-Trudeau Intl to Anchorage, Alaska
Boeing B-52 (FSX) airborne from Montréal Pierre-Elliott-Trudeau Intl to Anchorage, Alaska
Boeing B-52 (FSX) building up speed between Montréal and Anchorage
Boeing B-52 (FSX) building up speed between Montréal and Anchorage

The Boeing B-52 is a Captain Sim creation and the Montreal airport is made by FlyTampa. The remaining scenery is designed by ORBX. Here are few basic informations for those of you who would be tempted to try a flight immediately after the download is completed. For the takeoff: pitot heat, 100% flaps down, YAW SAS Switch Engage, stabilizer trimmed, full throttle within four seconds, climb between 1500 and 2000 ft/min. The climb with flaps down is done at 180 kts. Adjust the thrust so that you have time to bring the flaps in totally; use 230 kts as maximum for zero degree flaps. Once in flight, brake to stop the wheels rotation then bring the gear up (although not before reaching 1000 ft agl).

B-52 at cruising altitude (FSX)
B-52 at cruising altitude (FSX)
Boeing B-52 inbound to Anchorage, Alaska (FSX)
Boeing B-52 inbound to Anchorage, Alaska (FSX)

For a normal descent: (note: keep 20 kts in surplus of the proposed speed when the aircraft is turning). The descent is done at about 240 kts, with airbrakes 4, gear down, throttle to idle. À 220 kts, you may start applying flaps (they take 60 secondes to be fully extended). Once in downwind, use153 kts with airbrakes 4 (for 225,000 lbs). No more than 30 degrees turns. The rollout is done at no more than133 kts.

Boeing B-52 with flaps and gear out on the approach for Anchorage (FSX)
Boeing B-52 with flaps and gear out on the approach for Anchorage (FSX)
Boeing B-52 with runway in sight in Anchorage (FSX)
Boeing B-52 with runway in sight in Anchorage (FSX)
Boeing B-52 and the parachute on the arrival at Anchorage (FSX)
Boeing B-52 and the parachute on the arrival at Anchorage (FSX)

The touchdown with airbrakes full up is done at 110 kts IAS. The drag chute is then deployed (never above 135 kts). Keep a slight angle only, with the rear wheels touching first. When taxiing, turn the YAW switch and the airbrakes to “OFF”. Those are only basic infos. By the way, when the drag chute is deployed, you will not see a difference in the breaking distance; the chute is there only for “graphic” reality.  Have a good flight!

Boeing B-52 leaving the runway in Anchorage (FSX)
Boeing B-52 leaving the runway in Anchorage (FSX)

For more articles on flight simulation on my web site, click on the following link : Flight simulation

Categories
Screen captures

Flight simulation: a CP Air B-737 is approaching the Juneau virtual airport in Alaska

CP Air B-737 on approach for the Juneau airport in Alaska
CP Air B-737 on approach for the Juneau airport in Alaska

Here is a slightly modified screen capture showing a CP Air B-737 in a virtual flight towards the Juneau runway in Alaska. The Boeing is a creation of the Captain Sim company and the scenery is the result of the hard work of the ORBX pros.The meteorological system is a combination of three elements: Cumulus X, the “Heavy snowstorm” selection in FSX and the improvements to snow appearance obtained through PrecipitFX.