Categories
International airmail

First airmail flight from Estevan to Winnipeg, Canada.

Airmail Estevan Winnipeg CLP5 semi official stamp front cover
Airmail Estevan Winnipeg CLP5 semi official stamp front cover

The CLP5 semi-official stamp was issued on October 1st,1924 and put on airmail covers for the first airmail flight planned from Estevan, Saskatchewan to Winnipeg, Manitoba. What initially seemed to be a publicity stunt toward the use of airmail was instead a marketing operation planned by two promoters of a local industry, coal mining.

The Estevan to Winnipeg flight promoter and his associate had personal interests in the Eureka Coal and Brick mining company. On the back cover, we even have a commercial invitation: « Buy Estevan Brick ».

Airmail Estevan Winnipeg CLP5 semi official stamp. Back of cover.
Airmail Estevan Winnipeg CLP5 semi official stamp. Back of cover.

The pilot, E.A.Alton took-off from Estevan under nice weather on the morning of October 1st,1924 and headed east toward Winnipeg. He was supposed to do a stopover in Brandon, to refuel, but engine problems forced him to land in a field in Bienfait. During the landing, the wheels hit hidden rocks and the aircraft was wrecked.

The pilot quickly transferred the mail to the Bienfait Post Office where it was put on the Souris train to Winnipeg. The mail arrived late but on the same day at destination.

Categories
International airmail

Airline Pilots Special 747 Flight Committee

Airmail OACI In flight with the United Nations 1971
Airmail OACI In flight with the United Nations 1971

I got this first day cover thirty years ago. It had no real monetary value but certainly a historical value for whoever is interested in aviation and airmail history.

After multiple hijacked flights in several countries, hijacks that could easily have been avoided, the pilots got tired of the situation and decided to take matter into their own hands. With both pilots and politicians involved, the situation progressively changed.

International laws were modified and security was also increased, both at airports and in the aircrafts.

Airmail Airline Pilots Special 747 Flight Committee 1971 New-York to Montreal
Airmail Airline Pilots Special 747 Flight Committee 1971 New-York to Montreal

Postal history on aviation security

Below is a quote from the ICAO document:

“The series of skyjacking incidents, several of them desperate and dramatic, was a great and particular concern for the Air Line Pilots Association (ALPA, Member of IFALPA, the largest airline pilot union in the world representing pilots from U.S. and Canadian airlines); ALPA sought an innovative step and an extraordinarily direct method to intensively lobby influential politicians from all over the world, as the fundamental problem in advancing a solution to the skyjacking problem laid in the realm of politics. A Boeing 747 sponsored by ALPA was rented from Pan Am and nearly 300 United Nations personnel flew on Saturday 6 November 1971 on a short international flight from New York to Montréal, being the home of ICAO; the aircraft was piloted by Captain Stanley L. Doepke of Pan Am. More than 30 crewmembers who had been skyjacked placed these world political leaders in a controlled and dramatic situation where they could hear their stories. All the international politicians from the UN General Assembly who accepted ALPA’s hospitality on the Montréal excursion went home vowing immediate action by their countries. A special first day cover was issued to commemorate this unique event and a medal was given to the UN Delegates. More information on this issue can be obtained by clicking on the following link: Hijacked Pilots Urge UN Action.

However, even with these two new Conventions signed in 1971, the issue on sanctions was not sufficiently addressed and a few terrorist actions early in 1972 gave rise to grave concern and threat to the safety of civil aviation; it was felt that perpetrators of such acts were not or not appropriately brought to justice. Because governments had failed to deal adequately with such hijacking, the International Federation of Airline Pilots’ Associations (IFALPA) called for a world-wide 24-hour shutdown of services by pilots on 19 June 1972. The United States pressed in the ICAO Council for rapid action to complete the work on a convention which would provide for sanctions against states that did not punish hijackers. The ICAO Council adopted on 19 June 1972 a Resolution which directed the Legal Committee to convene immediately a special Subcommittee to work on the preparation of an international convention to look at this issue of sanctions.”

Categories
Flight Simulation

Losing four engines on a C-130 Hercules in flight simulation

A virtual C-130 belonging to the Blue Angels is taxiing at the High River airport, in Alberta.
A virtual C-130 belonging to the Blue Angels is taxiing at the High River airport, in Alberta.

Wanting to add an almost impossible flight in the “unhinged virtual flights” section of my web site, I tried a flight with the Blue Angels C-130 Hercules (Captain Sim) where the aircraft gradually lost all of its engines.

The Blue Angels C-130 Hercules waiting in line behind a single engine aircraft at the High River airport.
The Blue Angels C-130 Hercules waiting in line behind a single engine aircraft at the High River airport.

I am aware that the Blue Angels mechanics are real professionals, so I assumed that the engine failures were caused by an unknown reason.

A virtual Blue Angels Lockheed C-130 Hercules takes-off from the High River (CEN4) Canadian airport in Alberta.
A virtual Blue Angels Lockheed C-130 Hercules takes-off from the High River (CEN4) Canadian airport in Alberta.

The take-off was made without problem from the Canadian High River (CEN4) airport. This free airport was designed by Vlad Maly and is available through ORBX. The aircraft leaves the 4150 feet runway heading to the Coeur d’Alène airport (KCOE) in United States.

Eventually, the first engine stops. This does not cause a problem. The propeller is feathered and the gradual climbing continues.

The C-130 Hercules loses its first engine.
The C-130 Hercules loses its first engine.

The second engine stops. The pilot must forget the initial destination. Bonners Ferry (65S) becomes the alternate airport since the 4000×75 feet runway is good enough for the C-130.

The second engine has just stopped on this C-130 Hercules.
The second engine has just stopped on this C-130 Hercules.
Double engine failure for this virtual Blue Angles C-130 Hercules.
Double engine failure for this virtual Blue Angles C-130 Hercules.

The third engines gives way. A slow descent starts. Bonners Ferry is not very far. The airport is at an altitude of 2337 ft asl.

The aircraft is volontarily flown at a higher altitude than what would normally be requested for a normal approach, just in case the fourth engine stops. When three engines stop after the same refueling, the pilot has the right to think that what feeds the fourth engine can also cause problems.

Three engine failures on this virtual Blue Angels C-130 Hercules.
Three engine failures on this virtual Blue Angels C-130 Hercules.

The highest mountains are now behind the aircraft.

Virtual C-130 Hercules aircraft with three engine failures enroute to the Bonners Ferry airport.
Virtual C-130 Hercules aircraft with three engine failures enroute to the Bonners Ferry airport.

The Bonners Ferry (65S) runway is in sight.

Virtual C-130 Hercules aircraft with three engine failures, by the Bonners Ferry's runway.
Virtual C-130 Hercules aircraft with three engine failures, by the Bonners Ferry’s runway.

The fourth engine stops. The flaps will not be functional for the landing.

From now on, the pilot should save the virtual flight a few times since it is possible that several trials will be necessary to glide sucessfully to the airport. This is the fun of virtual flight.

The four engines have now failed on that virtual C-130 aircraft.
The four engines have now failed on that virtual C-130 aircraft.

The C-130 Hercules has become a big glider. When the speed is maintained, the aircraft loses more 1000 feet per minute. It is easier to feel the aircraft’s inertia.

The wheels will be brought out only when necessary since the gear adds a lot of drag.

From the position indicated in the picture below, it is impossible to arrive to the airport in a straight line: the aircraft will glide over the airport. In the picture, the aircraft seems to be on a good path for landing, but it is an illusion caused by the wide-angle format chosen for the screen capture.

The aircraft is definitely too high. It is impossible to use the flaps to increase the rate of descent.

Lockheed C-130 Hercules virtual aircraft with four engine failures on the approach to the Bonners Ferry's virtual airport (65S).
Lockheed C-130 Hercules virtual aircraft with four engine failures on the approach to the Bonners Ferry’s virtual airport (65S).

One must choose between 1) sideslips 2) a 360 degree turn to lose altitude or 3) multiple steep turns perpendicular to the runway to increase to distance to the airport.

What would you choose?

There is no universal method. The 360 degree turn is riskier but can prove efficient. An Airbus A330-200 flown by Quebecer Robert Piché that had lost all of its engines landed successfully in the Açores in 2001 after attempting a last minute 360 degree turn to lose altitude. But here, I did not believe there was enough altitude to safely complete the turn and reach the runway.

A few steep turns were made to extend to ride to the airport. Why steep turns? In order to avoid getting closer to the airport before an acceptable altitude was reached. This method helped keep an eye on the runway at all times to verify if the slope to the airport was still acceptable.

Fourty degree turn to the right on the approach to the Bonners Ferry's airport.
Fourty degree turn to the right on the approach to the Bonners Ferry’s airport.
Steep turn to the left to extend the distance to the Bonners Ferry airport.
Steep turn to the left to extend the distance to the Bonners Ferry airport.

I tried the three methods, always starting from the same saved flight (photo 10). After several sideslips, the aircraft was always approaching the airport too quickly. There was not enough time to lose altitude. The final speed always happened to be too high to stop a C-130 without flaps or thrust reversers.

The 360 degree turn, be it right or left, with different angles and a reasonable speed, always incurred a loss of altitude that brought the aircraft 200 to 300 feet short of the threshold.

Finally, after a few steep turns, the aircraft was positioned on final with the appropriate speed and altitude.

View of the Lockheed C-130 Hercules with four engine failures, on the approach for Bonners Ferry (65S).
View of the Lockheed C-130 Hercules with four engine failures, on the approach for Bonners Ferry (65S).

A few last seconds adjustments, to reposition the aircraft in the center of the runway.

Speed 150 knots. End of the turn for the Bonners Ferry's airport.
Speed 150 knots. End of the turn for the Bonners Ferry’s airport.

At 140 kts, but without any reverse thrust, the whole runway should be necessary to stop the aircraft.

Speed 140 knots, aligned with the Bonners Ferry's runway.
Speed 140 knots, aligned with the Bonners Ferry’s runway.

The landing was smooth and the aircraft stopped short of the threshold.

For an unknown reason, the anemometer was still indicating a 10 kts airspeed, even when the aircraft had stopped.

C-130 cargo aircraft on the Bonners Ferry's runway.
C-130 cargo aircraft on the Bonners Ferry’s runway.
Lockheed C-130 Hercules virtual aircraft after landing at the Bonners Ferry (65S) airport.
Lockheed C-130 Hercules virtual aircraft after landing at the Bonners Ferry (65S) airport.
C-130 Hercules aircraft in Bonners Ferry.
C-130 Hercules aircraft in Bonners Ferry.

Try such a flight in the virtual mode. The worst that can happen is that you have fun!

For more near impossible flights, head to:

Unhinged Virtual Flights

Categories
Flight Simulation

Flight simulation: the “Tapini” virtual scenery in Papua New Guinea (FSX)

A virtual DHC-6 Twin Otter enroute for Kokoda after a fire on the right engine while departing Yongai (KGH) in Papua New Guinea PNG (FSX)
A virtual DHC-6 Twin Otter enroute for Kokoda after a fire on the right engine while departing Yongai (KGH) in Papua New Guinea PNG (FSX)

Ken Hall and Tim Harris have created a new virtual scenery for flight simulation enthousiasts. It is called “Tapini” and sold by ORBX. Their penultimate creation, AYPY Jackson’s International, allowed the virtual pilot to fly in very demanding virtual airports along the Kokoda Trail in Papua New Guinea. “Tapini” represents a whole new challenge and I have included several screen captures to show you how the different runways look in this new virtual scenery.

“Tapini”, still in Papua New Guinea, allows the virtual pilot to test his skills on seven new runways located in difficult areas of the Owen Stanley Range. Those airports also constitute a serious test for any aircraft, like in the picture above where damages to the right engine were sustained at Yongai.

A virtual Piper Pacer virtuel is about to land on the Ononge (ONB) curved runway in Papua New Guinea PNG (FSX). (It is possible to see the curve starting on the top of the image)
A virtual Piper Pacer virtuel is about to land on the Ononge (ONB) curved runway in Papua New Guinea PNG (FSX). (It is possible to see the curve starting on the top of the image)

To improve the virtual clouds while flying between the different airports, I used either REX or FSGRW weather engines. The cloud textures and weather effects were improved by one or many of the following products: Cumulus X, PrecipitFXREX Texture Direct and REX Soft Clouds.

A virtual Dash 7 has just landed in Woitape (WTP) in Papua New Guinea PNG (FSX)
A virtual Dash 7 has just landed in Woitape (WTP) in Papua New Guinea PNG (FSX)

As variety is more fun, and also due to the different challenges created by those runways, the following virtual aircrafts were used: Carenado C-185F,  Lionheart Creations PA-18,  Virtavia DHC-4,  Aerosoft DHC-6 Twin Otter and Milton Shupe DHC-7.

The “Tapini” scenery gives the pilot a choice between the seven following runways:

ASB (Asimba)

A tricky, very short runway near a river.

A DHC-4 Caribou virtual aircraft is on approach for Asimba's sloped runway (ASB) in Papua New Guinea PNG (FSX)
A DHC-4 Caribou virtual aircraft is on approach for Asimba’s sloped runway (ASB) in Papua New Guinea PNG (FSX)

This is a very interesting runway, best done with a STOL aircraft like the Caribou DHC-4. The inhabitants might have to help you clear out some branches along the runway, considering the size of the aircraft. The runway slopes down on take-off, which helps to build up speed.

A DHC-4 Caribou virtual aircraft is on a stopover at Asimba (ASB) in Papua New Guinea PNG (FSX)
A DHC-4 Caribou virtual aircraft is on a stopover at Asimba (ASB) in Papua New Guinea PNG (FSX)
A DHC-4 Caribou virtual aircraft is airborne from Asimba (ASB) in Papua New Guinea PNG (FSX)
A DHC-4 Caribou virtual aircraft is airborne from Asimba (ASB) in Papua New Guinea PNG (FSX)

FNE (Fane)

A one-way, really challenging 12 degree sloped runway, with unpredictable winds.

A De Havilland DHC-7 virtual aircraft on final for the Fane (FNE) airport's sloped runway in Papua New Guinea PNG (FSX)
A De Havilland DHC-7 virtual aircraft on final for the Fane (FNE) airport’s sloped runway in Papua New Guinea PNG (FSX)

The runway sits on top of a hill. It is an amazing experience to land there. No wonder there are a lot of people watching the arrivals and departures.

If you slow down too quickly with an aircraft as big as the DHC-7 on that sloped runway, the twelve degree angle prevents you from moving forward. You must let the aircraft come down the runway very slowly, using the power to control the descent and the rudder to stay aligned on the runway, then apply take-off power for a few seconds to build just enough momentum to get above the hill.

A De Havilland DHC-7 virtual aircraft just finished taxiing uphill on the Fane (FNE) airport's sloped runway in Papua New Guinea PNG (FSX)
A De Havilland DHC-7 virtual aircraft just finished taxiing uphill on the Fane (FNE) airport’s sloped runway in Papua New Guinea PNG (FSX)

To turn the aircraft around, it’s a combination of power and reverse thrust until you clear all the obstacles (any humans venturing behind the aircraft will also be cleared during the operation…).

A De Havilland DHC-7 virtual aircraft is airborne from the Fane (FNE) airport's sloped runway in Papua New Guinea PNG (FSX)
A De Havilland DHC-7 virtual aircraft is airborne from the Fane (FNE) airport’s sloped runway in Papua New Guinea PNG (FSX)

There is a not so friendly man with a rifle watching the airport’s operations. Even the United Nations staff do not stay longer than necessary…

KGH (Yongai)

A very bumpy one-way sloped runway. A real bush aircraft is needed here!

A virtual DHC-6 Twin Otter on approach for the Yongai (KGH) bumpy runway in Papua New Guinea PNG (FSX)
A virtual DHC-6 Twin Otter on approach for the Yongai (KGH) bumpy runway in Papua New Guinea PNG (FSX)

Even with a real bush aircraft, there is a possibility that one of the aircraft’s propellers hits the ground while taxiing on the runway. There are so many deep holes that are hard to see, I can only wish the best of lucks to everyone trying out this airport!

A virtual DHC-6 Twin Otter on the Yongai (KGH) bumpy runway in Papua New Guinea PNG (FSX)
A virtual DHC-6 Twin Otter on the Yongai (KGH) bumpy runway in Papua New Guinea PNG (FSX)

Keep a close watch on the area near the little house at the end of the runway. The DHC-6 was really shaken while turning around for take-off. One of the propellers hit the ground but no problems were detected…until the aircraft was airborne. The fire alarm then went off, just as the aircraft was passing the runway threshold, seconds before flying over a cliff.

A virtual DHC-6 Twin Otter with its right engine on fire is just airborne from the Yongai (KGH) bumpy runway in Papua New Guinea PNG (FSX)
A virtual DHC-6 Twin Otter with its right engine on fire is just airborne from the Yongai (KGH) bumpy runway in Papua New Guinea PNG (FSX)

So much for the planned trip… and it was out of the question to return to Yongai on one engine. I had to pull the handle to stop the fire, feather the prop, cut the fuel where it was not needed anymore then head to the Kokoda airport as it was a sure alternative, having a long runway and an elevation that did not require the use of extra power.

KSP (Kosipe)

A relatively short runway that requires good calculations from the pilot, since it is located high in the mountains.

A virtual Cessna C-185F is enroute to the Kosipe (KSP) airport in Papua New Guinea PNG (FSX)
A virtual Cessna C-185F is enroute to the Kosipe (KSP) airport in Papua New Guinea PNG (FSX)

The Cessna C-185F is a very well suited aircraft for that runway. Make sure not to be too heavy on the brakes, as new C-185 propellers are hard to find in Kosipe. You can land in both directions. Ensure that the mixture is set properly as the airport is above 6300 feet.

A virtual Cessna C-185F is rolling after touching down on the Kosipe (KSP) runway in Papua New Guinea PNG (FSX)
A virtual Cessna C-185F is rolling after touching down on the Kosipe (KSP) runway in Papua New Guinea PNG (FSX)
A virtual Cessna C-185F is airborne from the Kosipe (KSP) runway in Papua New Guinea PNG (FSX)
A virtual Cessna C-185F is airborne from the Kosipe (KSP) runway in Papua New Guinea PNG (FSX)

ONB (Ononge)

A curved and very bumpy runway! For those who like low flying. Make sure you choose the good aircraft here; there is not much manoeuvering area once on the ground.

A Virtual Piper Pacer on approach for the Ononge (ONB) curved runway in Papua New Guinea PNG (FSX)
A Virtual Piper Pacer on approach for the Ononge (ONB) curved runway in Papua New Guinea PNG (FSX)

Ononge looks really scary when you show up on final for the first time. You wonder if the little trail that you see can really be a runway. For that kind of situation, the little Piper Pacer is an excellent aircraft, approaching slowly and braking on a dime. The runway is curved in the middle so you will need a bit of right rudder to keep the aircraft aligned with the runway.

A Virtual Piper Pacer on the Ononge curved runway in Papua New Guinea PNG (FSX)
A Virtual Piper Pacer on the Ononge curved runway in Papua New Guinea PNG (FSX)

I guess all those people with their cargo are waiting for a bigger airplane than mine…

A Virtual Piper Pacer is airborne from the Ononge curved runway in Papua New Guinea PNG (FSX)
A Virtual Piper Pacer is airborne from the Ononge curved runway in Papua New Guinea PNG (FSX)

TAP (Tapini)

A challenging one-way sloped runway nestled in a tight valley. You can even use an ILS to arrive there!

A virtual DHC-4 Caribou on short final for the Tapini (TAP) sloped runway in Papua New Guinea PNG (FSX)
A virtual DHC-4 Caribou on short final for the Tapini (TAP) sloped runway in Papua New Guinea PNG (FSX)

This is a superbly designed area and airport. I visited it with the DHC-4 Caribou but any other big STOL aircraft would have fitted there. There is enough room to manoeuver. It is not too bumpy. There is an interesting slope: it starts downward and ends upward: this helps to slow down the aircraft after landing.

A virtual DHC-4 Caribou on the ground at the Tapini (TAP) airport in Papua New Guinea PNG (FSX)
A virtual DHC-4 Caribou on the ground at the Tapini (TAP) airport in Papua New Guinea PNG (FSX)
A virtual DHC-4 Caribou is airborne from the Tapini (TAP) airport in Papua New Guinea PNG (FSX)
A virtual DHC-4 Caribou is airborne from the Tapini (TAP) airport in Papua New Guinea PNG (FSX)

WTP (Woitape)

Looks like a no brainer, but there is no margin of error on this one-way slightly sloped runway. Very precise calculations and settings are required if you want to land there with something else than a small aircraft.

A virtual De Havilland DHC-7 on final approach for the Woitape airport (WTP) virtual airport in Papua New Guinea (FSX)
A virtual De Havilland DHC-7 on final approach for the Woitape airport (WTP) virtual airport in Papua New Guinea (FSX)

I found the runway to be very slippery with the De Havilland DHC-7. I must say that there was a good crosswind, as I was flying with real life weather and winds. The DHC-7 behaves like a big boat while decelerating on such a runway.

A virtual De Havilland DHC-7 on the ground with two Twin Otters at the Woitape airport (WTP) in Papua New Guinea (FSX)
A virtual De Havilland DHC-7 on the ground with two Twin Otters at the Woitape airport (WTP) in Papua New Guinea (FSX)

The Woitape scenery is gorgeous. It is nice to have all those well designed virtual aircrafts, people and animals on site as this makes the scenery so much more realistic.

A De Havilland Virtual DHC-7 is airborne from the Woitape airport (WTP) in Papua New Guinea (FSX)
A De Havilland Virtual DHC-7 is airborne from the Woitape airport (WTP) in Papua New Guinea (FSX)

I love this new Orbx product. When you fly in such a realistic scenery, the brain does not make much difference between what is real and what is virtual. It really works! And if you use real life weather downloaded from the internet, it’s even better.

I tried the seven airports included in the “Tapini” virtual scenery and they are quite demanding. Yongai was the most challenging airport of them all. I had to do two missed approaches there since I ended up too high on the approach. I eventually got it right, like in real life!

I used the Microsoft flight simulator X (FSX) for all the virtual flights, but other platforms would have worked as well (Dovetail Games FSX Steam edition (FSX: SE) and all versions of P3D). The following products were also installed on my flight simulator: FTX Global, FTX Global Vector and Holgermesh, as well as Pilot’s FS Global 2010.

It is a totally immersive virtual experience and you have to forget everything else when undertaking those challenging virtual flights… if you want to make it “virtually” alive!

For more articles on flight simulation on my web site, click on the following link : Flight simulation